Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,504)

Search Parameters:
Authors = Lin Meng ORCID = 0000-0003-4351-6923

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3258 KiB  
Article
MTRSRP: Joint Design of Multi-Triangular Ring and Self-Routing Protocol for BLE Networks
by Tzuen-Wuu Hsieh, Jian-Ping Lin, Chih-Min Yu, Meng-Lin Ku and Li-Chun Wang
Sensors 2025, 25(15), 4773; https://doi.org/10.3390/s25154773 - 3 Aug 2025
Viewed by 180
Abstract
This paper presents the multi-triangular ring and self-routing protocol (MTRSRP), which is a new decentralized strategy designed to boost throughput and network efficiency in multiring scatternets. MTRSRP comprises two primary phases: leader election and scatternet formation, which collaborate to establish an effective multi-triangular [...] Read more.
This paper presents the multi-triangular ring and self-routing protocol (MTRSRP), which is a new decentralized strategy designed to boost throughput and network efficiency in multiring scatternets. MTRSRP comprises two primary phases: leader election and scatternet formation, which collaborate to establish an effective multi-triangular ring topology. In the leader election phase, nodes exchange broadcast messages to gather neighbor information and elect coordinators through a competitive process. The scatternet formation phase determines the optimal number of rings based on the coordinator’s collected node information and predefined rules. The master nodes then send unicast connection requests to establish piconets within the scatternet, following a predefined role table. Intra- and inter-bridge nodes were activated to interconnect the piconets, creating a cohesive multi-triangular ring scatternet. Additionally, MTRSRP incorporates a self-routing addressing scheme within the triangular ring architecture, optimizing packet transmission paths and reducing overhead by utilizing master/slave relationships established during scatternet formation. Simulation results indicate that MTRSRP with dual-bridge connectivity outperforms the cluster-based on-demand routing protocol and Bluetooth low-energy mesh schemes in key network transmission performance metrics such as the transmission rate, packet delay, and delivery ratio. In summary, MTRSRP significantly enhances throughput, optimizes routing paths, and improves network efficiency in multi-ring scatternets through its multi-triangular ring topology and self-routing capabilities. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor and Mobile Networks)
Show Figures

Figure 1

19 pages, 1376 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 - 1 Aug 2025
Viewed by 331
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥ 5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 285
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

9 pages, 1714 KiB  
Communication
Supramolecular Detoxification Approach of Endotoxin Through Host–Guest Complexation by a Giant Macrocycle
by Junyi Chen, Xiang Yu, Shujie Lin, Zihan Fang, Shenghui Li, Liguo Xie, Zhibing Zheng and Qingbin Meng
Molecules 2025, 30(15), 3188; https://doi.org/10.3390/molecules30153188 - 30 Jul 2025
Viewed by 193
Abstract
In Gram-negative bacteria, lipopolysaccharides (LPSs, also known as endotoxin) can induce extensive immune responses that will enable victims to produce severe septic shock syndrome. Because of the high mortality of sepsis in the face of standard treatment, advance detoxification schemes are urgently needed [...] Read more.
In Gram-negative bacteria, lipopolysaccharides (LPSs, also known as endotoxin) can induce extensive immune responses that will enable victims to produce severe septic shock syndrome. Because of the high mortality of sepsis in the face of standard treatment, advance detoxification schemes are urgently needed in clinics. Herein, we described a supramolecular detoxification approach via direct host–guest complexation by a giant macrocycle. Cationic pentaphen[3]arene (CPP3) bearing multiple quaternary ammonium groups was screened as a candidate antidote. CPP3 exhibited robust binding affinity toward LPS with an association constant of (4.79 ± 0.29) × 108 M−1. Co-dosing with an equivalent amount of CPP3 has been demonstrated to decrease LPS-induced cytotoxicity on a cellular level through inhibiting ROS generation and proinflammatory cytokine expression. In vivo experiments have further proved that post-treatment by CPP3 could significantly improve the survival rate of LPS-poisoned mice from 0 to 100% over a period of 3 days, and inflammatory abnormalities and tissue damage were also alleviated. Full article
Show Figures

Figure 1

20 pages, 2840 KiB  
Article
Functional Analysis of BmHemolin in the Immune Defense of Silkworms
by Long He, Lijing Liu, Huawei Liu, Xin Tang, Yide Meng, Hui Xie, Lin Zhu, Qingyou Xia and Ping Zhao
Insects 2025, 16(8), 778; https://doi.org/10.3390/insects16080778 - 29 Jul 2025
Viewed by 455
Abstract
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on [...] Read more.
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on mulberry leaves and artificial diets, we found that the expression of BmHemolin was significantly upregulated in silkworms reared on artificial diets, and this upregulation was highly likely induced by pathogenic microorganisms. Further interaction analysis revealed that BmHemolin could bind to pathogenic microorganisms and form aggregates. Meanwhile, BmHemolin enhanced the melanization and aggregation of hemocytes. Subsequent in vitro antibacterial experiments showed that BmHemolin had the ability to inhibit the growth of Escherichia coli. In vivo clearance experiments demonstrated that BmHemolin facilitated the clearance of pathogens in the body. Moreover, CRISPR/Cas9-mediated knockout of the BmHemolin gene led to the downregulation of antimicrobial peptides and phagocytosis-related factors, while an excess of BmHemolin could enhance the expression of these genes, thereby improving the silkworm’s immune resistance to Enterococcus mundtii and increasing survival rates. In summary, our research demonstrates that BmHemolin played a pivotal role in both humoral and cellular immunity in the silkworm, thereby defending against pathogen invasion. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 1984 KiB  
Review
Progress on 3-Nitropropionic Acid Derivatives
by Meng-Lin Feng, Zheng-Hui Li and Bao-Bao Shi
Biomolecules 2025, 15(8), 1066; https://doi.org/10.3390/biom15081066 - 24 Jul 2025
Viewed by 310
Abstract
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered [...] Read more.
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered significant research interest. Derivatives of 3-NPA, formed through esterification, have a wide range of biological activities including neurotoxic, antiviral, insecticidal, antimicrobial and antioxidant properties. This review systematically summarizes the structural characteristics, biological activities, and chemical synthesis of 3-NPA-derived compounds, providing valuable insights for further research and therapeutic applications. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives with Antiviral Activity)
Show Figures

Graphical abstract

21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 297
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

14 pages, 3864 KiB  
Article
Lycium barbarum Glycopeptide Inhibits Colorectal Cancer Cell Proliferation via Activating p53/p21 Pathway and Inducing Cellular Senescence
by Meng Yuan, Da Wo, Yuhang Gong, Ming Lin, En Ma, Weidong Zhu and Dan-ni Ren
Int. J. Mol. Sci. 2025, 26(15), 7091; https://doi.org/10.3390/ijms26157091 - 23 Jul 2025
Viewed by 171
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Its sustained proliferative signaling poses a major challenge for effective therapeutic intervention. Since CRC originates from aberrantly proliferating crypt cells, limiting proliferation or inducing senescence may offer a promising treatment [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Its sustained proliferative signaling poses a major challenge for effective therapeutic intervention. Since CRC originates from aberrantly proliferating crypt cells, limiting proliferation or inducing senescence may offer a promising treatment approach. Lycium barbarum glycopeptide (LbGP), a traditional Chinese medicine component, is known for its immunomodulatory and other beneficial effects. This study aims to examine the anti-tumor effects of LbGP in CRC as well as its underlying mechanisms of action. We used CT26 CRC cells to investigate the effects of LbGP on tumor proliferation both in vitro and in an allograft mouse model. LbGP treatment significantly inhibited CT26 cell proliferation in vitro and suppressed tumor growth in CT26-implanted mice. Furthermore, LbGP treatment significantly upregulated p53/p21 levels both in vitro and in vivo, leading to CT26 cell cycle arrest in the S phase and the induction of tumor cell senescence. These findings demonstrate that LbGP effectively induces CRC cell cycle arrest and senescence via the p53/p21 pathway and may serve as a promising candidate for CRC adjuvant therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Adding Ethanol to the Batch and Continuous Transplantation Co-Culture of Maize Straw Fermented by Rumen Fluid for the Production of Caproic Acid
by Zhiqiang Cheng, Zitong Meng, Yue Shen, Wengboyang Liu, Li Liu, Guoqi Zhao, Lin Wang and Miao Lin
Fermentation 2025, 11(7), 413; https://doi.org/10.3390/fermentation11070413 - 18 Jul 2025
Viewed by 352
Abstract
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture [...] Read more.
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture system, the impacts of ethanol addition on pH and gas production were explored, with a focus on the caproic acid yield in the final (eighth generation) generation and alterations in bacterial and fungal communities. The results showed that the relative abundances of unidentified_Clostridiales, Shuttleworthia, and Syntrophococcus in ethanol-driven caproic acid production were enriched by 5.36-fold, 2.61-fold, and 2.25-fold, respectively. This consequently increased the concentration of caproic acid in the fermentation broth to 1492 mg/L, representing a 3.7-fold increase. These findings are highly significant for the high-value utilization of maize straw waste to produce caproic acid via the carboxylic acid platform using rumen microorganisms in industrial processing. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

18 pages, 9131 KiB  
Article
The Primary Cultivation of Oogonial Stem Cells from Black Rockfish (Sebastes schlegelii): Morphology and Transcriptome Landscape
by Jingjing Zhang, Lei Lin, Shengyu Zhu, Yanming Zhang, Caichao Dong, Yu Yang, Yuyan Liu, Xuwen Cao, Yangbin He, Honglong Ji, Bo Meng, Qian Wang and Changwei Shao
Int. J. Mol. Sci. 2025, 26(14), 6772; https://doi.org/10.3390/ijms26146772 - 15 Jul 2025
Viewed by 287
Abstract
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female [...] Read more.
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female breeding. In this study, we successfully isolated and cultured OSCs from S. schlegelii for 12 passages. These cells exhibited alkaline phosphatase activity, expressed germline marker genes (ddx4, cdh1, klf4), and maintained a diploid karyotype (2n = 48). Transcriptomic comparisons between early (P3) and late (P12) passages revealed significant metabolic dysfunction and cell cycle arrest in the late-passage cells. Specifically, the down-regulation of glutathione-related and glycolysis-related genes (gstm3, gstt1, mgst3, gsta1, gsta4, gsto1, gapdh) and key mitotic regulators (cdk1, chk1, cdk4, e2f3, ccne2, ccnb1) suggested that metabolic imbalance contributes to oxidative stress, resulting in cell cycle inhibition and eventual senescence. This study provides a marine fish model for investigating metabolism-cell cycle interactions in germline stem cells and lays the foundation for future applications in germ cell transplantation and all-female breeding. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 338
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

17 pages, 1513 KiB  
Review
Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies
by Xingxing Zhang, Lumiao Wang, Nixin Lin, Meng Gao and Yongqi Huang
Int. J. Mol. Sci. 2025, 26(14), 6709; https://doi.org/10.3390/ijms26146709 - 12 Jul 2025
Viewed by 560
Abstract
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is [...] Read more.
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is a pathological hallmark of a group of neurodegenerative diseases known as tauopathies. Despite enormous efforts and rapid advancements in the field, effective treatment remains lacking for these diseases. In this review, we provide an overview of the structure and phase transition of tau protein. In particular, we focus on the involvement of liquid–liquid phase separation in the biology and pathology of tau. We then discuss several potential strategies for combating tauopathies in the context of phase separation: (i) modulating the formation of tau condensates, (ii) delaying the liquid-to-solid transition of tau condensates, (iii) reducing the enrichment of aggregation-prone species into tau condensates, and (iv) suppressing abnormal post-translational modifications on tau inside condensates. Deciphering the structure–activity relationship of tau phase transition modulators and uncovering the conformational changes in tau during phase transitions will aid in developing therapeutic agents targeting tau in the context of phase separation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3193 KiB  
Article
Specific Nested PCR for the Detection of 16SrI and 16SrII Group Phytoplasmas Associated with Yellow Leaf Disease of Areca Palm in Hainan, China
by Huiyuan Ge, Xiuli Meng, Zhaowei Lin, Saad Jan, Weiwei Song, Weiquan Qin, Qinghua Tang and Xiaoqiong Zhu
Plants 2025, 14(14), 2144; https://doi.org/10.3390/plants14142144 - 11 Jul 2025
Viewed by 412
Abstract
Yellow leaf disease (YLD), caused by the areca palm yellow leaf phytoplasma (APYL), poses a significant threat to the sustainability of the areca palm industry. Timely and accurate detection is essential for effectively diagnosing and managing this disease. This study developed a novel [...] Read more.
Yellow leaf disease (YLD), caused by the areca palm yellow leaf phytoplasma (APYL), poses a significant threat to the sustainability of the areca palm industry. Timely and accurate detection is essential for effectively diagnosing and managing this disease. This study developed a novel nested PCR system using primers specifically designed from conserved regions of the phytoplasma 16S rDNA sequence to overcome limitations such as false positives often associated with universal nested PCR primers. The resulting primer pairs HNP-1F/HNP-1R (outer) and HNP-2F/HNP-2R (inner) consistently amplified a distinct 429 bp fragment from APYL strains belonging to the 16SrI and 16SrII groups. The detection sensitivity reached 7.5 × 10−7 ng/μL for 16SrI and 4 × 10−7 ng/μL for 16SrII. Field validation using leaf samples from symptomatic areca palms confirmed the high specificity and reliability of the new primers in detecting APYL. Compared to conventional universal primers (P1/P7 and R16mF2/R16mR1), this newly developed nested PCR system demonstrated higher specificity, sensitivity, and speed, making it a valuable tool for the early diagnosis and management of YLD in areca palms. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

22 pages, 2041 KiB  
Article
An Improved and Updated Method for the Determination of Imidazole Compounds in Geological Samples
by Henan Li, Zhiling You, Kunde Lin, Yuncong Ge, Qian Wang and Meng Chen
Water 2025, 17(14), 2062; https://doi.org/10.3390/w17142062 - 10 Jul 2025
Viewed by 308
Abstract
The widespread environmental dissemination of imidazole compounds necessitates robust analytical monitoring tools. This study developed a novel isotope-labeled surrogate-based high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method for the simultaneous determination of 21 imidazoles in water, sediment, and soil. The optimized [...] Read more.
The widespread environmental dissemination of imidazole compounds necessitates robust analytical monitoring tools. This study developed a novel isotope-labeled surrogate-based high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method for the simultaneous determination of 21 imidazoles in water, sediment, and soil. The optimized SPE protocol using Oasis HLB cartridges achieved high recoveries, with chromatographic separation completed in 25 min. Six isotope-labeled standards effectively corrected matrix effects (−57% to 8%), yielding MQLs < 1.0 ng·L−1 (water) and <1.0 μg·kg−1 (sediment/soil). Validation confirmed linearity (R2 > 0.995), accuracy (60–120% recovery for 20/21 analytes), and precision (relative standard deviation, RSD < 15%). Its application in Jiulong River revealed significant contamination, detecting eight imidazoles in both water (up to 49.29 ng·L−1) and sediment (up to 24.01 μg·kg−1). This standardized tool enables routine monitoring of pharmaceutical residues across environmental compartments, supporting regulatory frameworks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop