Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,450)

Search Parameters:
Authors = Kai Wu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4425 KiB  
Article
Multidimensional Phenotypic and Microbiome Studies Uncover an Association Between Reduced Feed Efficiency in Sheep During Mycoplasmal Pneumonia and Microbial Crosstalk Within the Rumen-Lung Axis
by Lianjun Feng, Yukun Zhang, Xiaoxue Zhang, Fadi Li, Kai Huang, Deyin Zhang, Zongwu Ma, Chengqi Yan, Qi Zhang, Mengru Pu, Ziyue Xiao, Lei Gao, Changchun Lin, Weiwei Wu, Weimin Wang and Huibin Tian
Vet. Sci. 2025, 12(8), 741; https://doi.org/10.3390/vetsci12080741 - 7 Aug 2025
Abstract
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To [...] Read more.
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To investigate alterations in the lung and rumen microbiota of sheep with MPS, the crosstalk between these microbial communities, and their impacts on growth phenotypes. From a cohort of 414 naturally infected six-month-old male Hu sheep, we selected 10 individuals with severe pulmonary pathology and 10 healthy controls for detailed phenotypic and microbiome analyses. Assessment of 359 phenotypic traits revealed that MPS significantly impairs feed efficiency and growth rate (p < 0.05). Through 16S rRNA gene sequencing, we found that MPS significantly altered the pulmonary microbiota community structure (p < 0.01), with a noticeable impact on the rumen microbiota composition (p = 0.059). Succinivibrionaceae_UCG-001 was significantly depleted in both the rumen and lungs of diseased sheep (p < 0.05) and strongly associated with reduced average daily feed intake (p < 0.05). In addition, pulmonary Pasteurella and ruminal Succinivibrionaceae_UCG-002 were significantly enriched in MPS-affected sheep, showed a strong positive correlation (p < 0.05), and were both negatively associated with feed efficiency (p < 0.05). Notably, Pasteurella multocida subsp. gallicida may act as a keystone species influencing feed efficiency. These findings point to a previously unrecognized rumen-lung microbial axis that may modulate host productivity in sheep affected by MPS. This work provides new insights into the pathogenesis of MPS and offers potential targets for therapeutic intervention and management. Full article
Show Figures

Figure 1

14 pages, 1870 KiB  
Article
Analysis of Risk Factors for High-Risk Lymph Node Metastasis in Papillary Thyroid Microcarcinoma
by Yi-Hsiang Chiu, Shu-Ting Wu, Yung-Nien Chen, Wen-Chieh Chen, Lay-San Lim, Yvonne Ee Wern Chiew, Ping-Chen Kuo, Ya-Chen Yang, Shun-Yu Chi and Chen-Kai Chou
Cancers 2025, 17(15), 2585; https://doi.org/10.3390/cancers17152585 - 6 Aug 2025
Abstract
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is [...] Read more.
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is defined as ≥5 metastatic lymph nodes and/or lateral neck metastasis. Methods: We conducted a retrospective review of 985 patients with PTMC who underwent thyroidectomy at the Kaohsiung Chang Gung Memorial Hospital from 2013 to 2022. Results: Among the 985 patients, 100 (10.2%) had lymph node metastasis (LNM), and 27% of these were classified as having HRLNM. Male sex (OR 3.61, p = 0.04) and extranodal extension (OR 3.76, p = 0.043) were independent predictors of HRLNM. Patients with LNM exhibited lower rates of excellent treatment response (75% vs. 87%, p = 0.001), higher recurrence rates (9.0% vs. 0.6%, p = 0.001), and an increased risk of distant metastasis (2.0% vs. 0%). Recurrence-free survival (RFS) was significantly shorter in patients with LNM (120.9 vs. 198.6 months, p < 0.001). Although HRLNM showed a trend toward reduced RFS (113.5 vs. 124.6 months, p = 0.177), its impact on long-term survival remains uncertain. Conclusions: Male sex and extranodal extension were significant risk factors for HRLNM in patients with PTMC. These findings highlight the need for individualized risk stratification to guide treatment strategies and improve patient outcomes. Full article
Show Figures

Figure 1

35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

11 pages, 1947 KiB  
Article
Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses
by Baiyila Wu, Xue Cao, Mingshan Fu, Yuxin Bao, Tiemei Wu, Kai Liu, Shubo Wen, Fenglin Gao, Haifeng Wang, Hua Mei and Yang Song
Agronomy 2025, 15(8), 1888; https://doi.org/10.3390/agronomy15081888 - 5 Aug 2025
Abstract
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus [...] Read more.
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus (L) group, molasses (M) group, and L. rhamnosus + molasses (LM) group, with three replications per group, and L. chinensis silages were fermented for 20 and 40 days. The lactic acid, acetic acid, 1,2-propanediol, and propionic acid contents increased, and pH, butyric acid, 1-propanol, and ethanol contents decreased in the L, M, and LM groups compared to the C group. In the LM group, the number of lactic acid bacteria was the highest, while the pH was the lowest. Enterobacter and Paucibacter were the main dominant genera in the C group. The addition of L. rhamnosus and molasses increased the relative abundance of Lactobacillus, Weissella, and Enterococcus. Lactobacillus abundance correlated positively (p < 0.01) with Lactococcus, Enterococcus, and Weissella and correlated negatively with Enterobacter and Paucibacter. Conversely, Enterobacter and Paucibacter showed a strong positive correlation (p < 0.01, R = 0.55) during fermentation. Lactobacillus, Enterococcus, and Weissella were positively associated (p < 0.01) with acetic and lactic acid levels, while Enterobacter abundance was correlated positively (p < 0.05, R = 0.43) with 1,2-propanediol content. In summary, the addition of both L. rhamnosus and molasses improved the fermentation quality and bacterial community structure of big-bale L. chinensis silage. In addition to inhibiting harmful microorganisms, this combination improved the fermentation products of big-bale L. chinensis silage through microbial regulation. Full article
(This article belongs to the Special Issue Innovative Solutions for Producing High-Quality Silage)
Show Figures

Figure 1

19 pages, 4279 KiB  
Article
Identification of Anticancer Target Combinations to Treat Pancreatic Cancer and Its Associated Cachexia Using Constraint-Based Modeling
by Feng-Sheng Wang, Ching-Kai Wu and Kuang-Tse Huang
Molecules 2025, 30(15), 3200; https://doi.org/10.3390/molecules30153200 - 30 Jul 2025
Viewed by 246
Abstract
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated [...] Read more.
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated cachexia (PDAC-CX), using cell-specific genome-scale metabolic models (GSMMs). The human metabolic network Recon3D was extended to include protein synthesis, degradation, and recycling pathways for key inflammatory and structural proteins. These enhancements enabled the reconstruction of cell-specific GSMMs for PDAC and PDAC-CX, and their respective healthy counterparts, based on transcriptomic datasets. Medium-independent metabolic biomarkers were identified through Parsimonious Metabolite Flow Variability Analysis and differential expression analysis across five nutritional conditions. A fuzzy multi-objective optimization framework was employed within the anticancer target discovery platform to evaluate cell viability and metabolic deviation as dual criteria for assessing therapeutic efficacy and potential side effects. While single-enzyme targets were found to be context-specific and medium-dependent, eight combinatorial targets demonstrated robust, medium-independent effects in both PDAC and PDAC-CX cells. These include the knockout of SLC29A2, SGMS1, CRLS1, and the RNF20–RNF40 complex, alongside upregulation of CERK and PIKFYVE. The proposed integrative strategy offers novel therapeutic avenues that address both tumor progression and cancer-associated cachexia, with improved specificity and reduced off-target effects, thereby contributing to translational oncology. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

7 pages, 784 KiB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 267
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Viewed by 354
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Viewed by 270
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2895 KiB  
Article
Trade-Offs of Plant Biomass by Precipitation Regulation Across the Sanjiangyuan Region of Qinghai–Tibet Plateau
by Mingxue Xiang, Gang Fu, Junxi Wu, Yunqiao Ma, Tao Ma, Kai Zheng, Zhaoqi Wang and Xinquan Zhao
Plants 2025, 14(15), 2325; https://doi.org/10.3390/plants14152325 - 27 Jul 2025
Viewed by 301
Abstract
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, [...] Read more.
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, and (2) precipitation-mediated AGB-BGB allocation strategies. To address this, we conducted a large-scale field survey across precipitation gradients (400–700 mm/y) in the Sanjiangyuan alpine grasslands, Qinghai–Tibet Plateau. During the 2024 growing season, a total of 63 sites (including 189 plots and 945 quadrats) were sampled along five aridity classes: <400, 400–500, 500–600, 600–700, and >700 mm/y. Our findings revealed precipitation as the dominant driver of biomass dynamics: AGB exhibited equal growth rates relative to BGB within the 600–700 mm/y range, but accelerated under drier/wetter conditions. This suggests preferential allocation to aboveground parts under most precipitation regimes. Precipitation explained 31.71% of AGB–BGB trade-off variance (random forest IncMSE), surpassing contributions from AGB (17.61%), specific leaf area (SLA, 13.87%), and BGB (12.91%). Structural equation modeling confirmed precipitation’s positive effects on SLA (β = 0.28, p < 0.05), AGB (β = 0.53, p < 0.05), and BGB (β = 0.60, p < 0.05), with AGB-mediated cascades (β = 0.33, p < 0.05) dominating trade-off regulation. These results advance our understanding of mechanistic drivers governing allometric AGB–BGB relationships across climatic gradients in alpine ecosystems of the Sanjiangyuan Region on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 2429 KiB  
Article
Conserved and Specific Root-Associated Microbiome Reveals Close Correlation Between Fungal Community and Growth Traits of Multiple Chinese Fir Genotypes
by Xuan Chen, Zhanling Wang, Wenjun Du, Junhao Zhang, Yuxin Liu, Liang Hong, Qingao Wang, Chuifan Zhou, Pengfei Wu, Xiangqing Ma and Kai Wang
Microorganisms 2025, 13(8), 1741; https://doi.org/10.3390/microorganisms13081741 - 25 Jul 2025
Viewed by 317
Abstract
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and [...] Read more.
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated. Chinese fir (Cunninghamia lanceolata) is an important tree species for both economy and ecosystem in the subtropical regions of Asia. In this study, we investigated the tissue-specific fungal community structure and diversity of nine different Chinese fir genotypes (39 years) grown in the same field. With non-metric multidimensional scaling (NMDS) analysis, we revealed the divergence of the fungal community from rhizosphere soil (RS), fine roots (FRs), and thick roots (TRs). Through analysis with α-diversity metrics (Chao1, Shannon, Pielou, ACE, Good‘s coverage, PD-tree, Simpson, Sob), we confirmed the significant difference of the fungal community in RS, FR, and TR samples. Yet, the overall fungal community difference was not observed among nine genotypes for the same tissues (RS, FR, TR). The most abundant fungal genera were Russula in RS, Scytinostroma in FR, and Subulicystidium in TR. Functional prediction with FUNGuild analysis suggested that ectomycorrhizal fungi were commonly enriched in rhizosphere soil, while saprotroph–parasite and potentially pathogenic fungi were more abundant in root samples. Specifically, genotype N104 holds less ectomycorrhizal and pathogenic fungi in all tissues (RS, FR, TR) compared to other genotypes. Additionally, significant correlations of several endophytic fungal taxa (Scytinostroma, Neonothopanus, Lachnum) with the growth traits (tree height, diameter, stand volume) were observed. This addresses that the interaction between tree roots and the fungal community is a reflection of tree growth, supporting the “trade-off” hypothesis between growth and defense in forest trees. In summary, we revealed tissue-specific, as well as host genotype-specific and genotype-common characters of the structure and functions of their fungal communities. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 4th Edition)
Show Figures

Figure 1

13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 340
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

20 pages, 3657 KiB  
Article
Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibition in a Mouse Non-Muscle-Invasive Bladder Cancer Model
by Chih-Rong Shyr, Ching-Feng Wu, Kai-Cheng Yang, Wen-Lung Ma and Chi-Ping Huang
Cancers 2025, 17(15), 2448; https://doi.org/10.3390/cancers17152448 - 24 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually [...] Read more.
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually recur. To add a novel therapy to complement the deficits of the current treatments, this study assesses the antitumor activity and mechanisms of action of intravesical xenogeneic urothelial cell (XUC) treatment as monotherapy and in combination with either chemotherapy or immune checkpoint inhibition (ICI). Methods: The orthotopic NMIBC graft tumor-bearing mice were randomly assigned into different treatment groups, receiving either intravesical XUCs, gemcitabine, anti-programmed death-ligand 1 (PD-L1) antibodies alone or in combination with gemcitabine or anti-PD-1 antibodies. The tumor responses, survival, and immune reactions were analyzed. Results: Intravesical XUC treatment exhibited significantly more antitumor activity to delay tumor progression than the control group and a similar effect to chemotherapy and ICI. In addition, there were significantly higher effects in the combined groups than single treatments. Immune tumor microenvironment and immune cell proliferation, cytotoxicity, and cytokine secretion were also activated by XUC treatment. Moreover, the combined groups have the highest effects. Conclusions: In vivo and ex vivo studies showed increased antitumor efficacy and immune responses by intravesical XUC treatment in single and combined treatments, suggesting a potential utility of this xenogeneic cell immunotherapeutic agent. Intravesical XUC treatment has the potential to address the substantial unmet need in NMIBC therapy as a bladder-sparing treatment option for NMIBC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 774 KiB  
Article
Bayesian Inertia Estimation via Parallel MCMC Hammer in Power Systems
by Weidong Zhong, Chun Li, Minghua Chu, Yuanhong Che, Shuyang Zhou, Zhi Wu and Kai Liu
Energies 2025, 18(15), 3905; https://doi.org/10.3390/en18153905 - 22 Jul 2025
Viewed by 161
Abstract
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and [...] Read more.
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and creating significant technical challenges in maintaining operational reliability. This paper addresses these challenges through a novel Bayesian inference framework that synergistically integrates PMU data with an advanced MCMC sampling technique, specifically employing the Affine-Invariant Ensemble Sampler. The proposed methodology establishes a probabilistic estimation paradigm that systematically combines prior engineering knowledge with real-time measurements, while the Affine-Invariant Ensemble Sampler mechanism overcomes high-dimensional computational barriers through its unique ensemble-based exploration strategy featuring stretch moves and parallel walker coordination. The framework’s ability to provide full posterior distributions of inertia parameters, rather than single-point estimates, helps for stability assessment in renewable-dominated grids. Simulation results on the IEEE 39-bus and 68-bus benchmark systems validate the effectiveness and scalability of the proposed method, with inertia estimation errors consistently maintained below 1% across all generators. Moreover, the parallelized implementation of the algorithm significantly outperforms the conventional M-H method in computational efficiency. Specifically, the proposed approach reduces execution time by approximately 52% in the 39-bus system and by 57% in the 68-bus system, demonstrating its suitability for real-time and large-scale power system applications. Full article
Show Figures

Figure 1

20 pages, 431 KiB  
Article
The Power of Knowledge: How Can Educational Competitiveness Improve Urban Energy Efficiency?
by Yan Huang, Yang Feng, Da Gao, Jiawen Wei and Kai Wu
Sustainability 2025, 17(14), 6609; https://doi.org/10.3390/su17146609 - 19 Jul 2025
Viewed by 362
Abstract
With an economic model characterized by high energy consumption and low efficiency, China is facing serious energy shortages and environmental problems. However, education, as the cornerstone of social progress, has been overlooked in its role in improving energy efficiency. This study aims to [...] Read more.
With an economic model characterized by high energy consumption and low efficiency, China is facing serious energy shortages and environmental problems. However, education, as the cornerstone of social progress, has been overlooked in its role in improving energy efficiency. This study aims to enhance our understanding of the impact of educational competitiveness on urban green total factor energy efficiency (GTFEE), helping policymakers to achieve sustainable urban development. This study utilizes panel data from 20 major Chinese cities spanning from 2012 to 2022 and applies a two-way fixed effects model to investigate the relationship and pathways of educational competitiveness (Ec) on GTFEE. Our results show that the Ec index can enhance the major urban GTFEE. Among them, educational resource competitiveness, input competitiveness, efficiency competitiveness, and sustainable competitiveness can all enhance urban GTFEE, but the coefficient of the educational scale is not significant. In addition, Ec can effectively improve GTFEE by promoting green technological innovation, alleviating human resource mismatch, and driving industrial structure upgrading. Furthermore, the impact of Ec on GTFEE shows significant regional heterogeneity, with its effect weakening from the eastern coastal areas to the western inland regions. Full article
Show Figures

Figure 1

26 pages, 23038 KiB  
Article
Geometry and Kinematics of the North Karlik Tagh Fault: Implications for the Transpressional Tectonics of Easternmost Tian Shan
by Guangxue Ren, Chuanyou Li, Chuanyong Wu, Kai Sun, Quanxing Luo, Xuanyu Zhang and Bowen Zou
Remote Sens. 2025, 17(14), 2498; https://doi.org/10.3390/rs17142498 - 18 Jul 2025
Viewed by 379
Abstract
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault [...] Read more.
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault System. The North Karlik Tagh Fault (NKTF) is an important fault demarcating the north boundary of the Karlik Tagh. While structurally significant, it is poorly understood in terms of its late Quaternary tectonic activity. In this study, we analyze the offset geomorphology based on interpretations of satellite imagery, field survey, and digital elevation models derived from structure-from-motion (SfM), and we provide the first quantitative constraints on the late-Quaternary slip rate using the abandonment age of deformed fan surfaces and river terraces constrained by the 10Be cosmogenic dating method. Our results reveal that the NKTF can be divided into the Yanchi and Xiamaya segments based on along-strike variations. The NW-striking Yanchi segment exhibits thrust faulting with a 0.07–0.09 mm/yr vertical slip, while the NE-NEE-striking Xiamaya segment displays left-lateral slip at 1.1–1.4 mm/yr since 180 ka. In easternmost Tian Shan, the interaction between thrust and sinistral strike-slip faults forms a transpressional regime. These left-lateral faults, together with those in the Gobi Altai, collectively facilitate eastward crustal escape in response to ongoing Indian indentation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop