Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Jackson Roberto Guedes da Silva Almeida ORCID = 0000-0002-0867-1357

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4350 KiB  
Article
The Development and Characterization of an Andiroba Oil-Based Nanoemulsion (Carapa guianensis, Aubl.): Insights into Its Physico-Chemical Features and In Vitro Potential Healing Effects
by Isolda de Sousa Monteiro, Aimê Stefany Alves Fonseca, Carolina Ramos dos Santos, João Paulo Santos de Carvalho, Sebastião William da Silva, Valdir F. Veiga-Junior, Rayssa Ribeiro, Ivo José Curcino Vieira, Thalya Soares Ribeiro Nogueira, Carlos Alexandre Rocha da Costa, Gilson Gustavo Lucinda Machado, Lorrane Ribeiro Souza, Eduardo Valério Barros Vilas Boas, Samuel Silva Morais, Jackson Roberto Guedes da Silva Almeida, Livia Macedo Dutra, Victória Laysna dos Anjos Santos, Atailson Oliveira Silva, Marcelo Henrique Sousa, Marcella Lemos Brettas Carneiro and Graziella Anselmo Joanittiadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(4), 498; https://doi.org/10.3390/pharmaceutics17040498 - 9 Apr 2025
Viewed by 1048
Abstract
Background/Objectives: Andiroba oil, extracted from Carapa guianensis seeds, possesses therapeutic properties including anti-inflammatory and wound healing effects. This study aimed to develop and characterize a nanoemulsion formulation containing andiroba oil (NeAnd) and to evaluate its cytotoxicity and wound healing potential in vitro. Methods [...] Read more.
Background/Objectives: Andiroba oil, extracted from Carapa guianensis seeds, possesses therapeutic properties including anti-inflammatory and wound healing effects. This study aimed to develop and characterize a nanoemulsion formulation containing andiroba oil (NeAnd) and to evaluate its cytotoxicity and wound healing potential in vitro. Methods: The oil was evaluated for acidity, antioxidant activity, and fatty acid composition. NeAnd was produced by ultrasonication and characterized using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, dynamic light scattering, and transmission electron microscopy. Results: NeAnd exhibited a spherical shape and stable physicochemical properties, with an average hydrodynamic diameter (HD) of 205.7 ± 3.9 nm, a polydispersity index (PdI) of 0.295 ± 0.05, a negative zeta potential of −4.16 ± 0.414 mV, and pH of approximately 6.5. These nanodroplets remained stable for 120 days when stored at 4 °C and maintained their parameters even under pH variations. FTIR and Raman analyses confirmed the presence of functional groups and the organization of fatty acid chains in NeAnd. Cell viability assays revealed no statistically significant differences in cytotoxicity at various concentrations (90–360 µg/mL) after 24 and 48 h. In scratch wound healing assays, NeAnd significantly enhanced wound closure (88.9%) compared to the PBS control (38%) and free andiroba oil (68.6%) in keratinocytes (p < 0.05). Conclusions: These promising findings indicate NeAnd as a potential nanophytomedicine for wound healing and tissue regeneration treatments. Full article
(This article belongs to the Special Issue Recent Advances in Nanotechnology Therapeutics)
Show Figures

Graphical abstract

15 pages, 2904 KiB  
Article
The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy
by Luiz Antonio Miranda de Souza Duarte Filho, Cintia Emi Yanaguibashi Leal, Pierre-Edouard Bodet, Edilson Beserra de Alencar Filho, Jackson Roberto Guedes da Silva Almeida, Manon Porta Zapata, Oussama Achour, Hugo Groult, Carlos Arthur Gouveia Veloso, Claudio Viegas Júnior, Nathalie Bourgougnon and Laurent Picot
Mar. Drugs 2024, 22(6), 244; https://doi.org/10.3390/md22060244 - 27 May 2024
Viewed by 2517
Abstract
Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme [...] Read more.
Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme’s proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease’s active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

12 pages, 2303 KiB  
Article
Modulatory Effect of Croton heliotropiifolius Kunth Ethanolic Extract on Norfloxacin Resistance in Staphylococcus aureus
by Samara Barbosa de Brito, Felipe Araújo de Oliveira Alcântara, Antonio Linkoln Alves Borges Leal, Kaliny Henri da Silva Veloso, Leonardo da Rocha Sousa, Ana Paula de Oliveira, Alan Diego da Conceição Santos, Lívia Macedo Dutra, Jackson Roberto Guedes da Silva Almeida, Carlos Emídio Sampaio Nogueira, João Sammy Nery de Souza, Natália Cruz-Martins, Daniel Dias Rufino Arcanjo and Humberto Medeiros Barreto
Drugs Drug Candidates 2024, 3(1), 1-12; https://doi.org/10.3390/ddc3010001 - 22 Dec 2023
Cited by 1 | Viewed by 1637
Abstract
The high frequency of infectious diseases has spurred research into effective tactics to combat microorganisms that are resistant to several drugs. The overproduction of the transmembrane efflux pump protein NorA, which may export hydrophilic fluoroquinolones, is a common mechanism of resistance in S. [...] Read more.
The high frequency of infectious diseases has spurred research into effective tactics to combat microorganisms that are resistant to several drugs. The overproduction of the transmembrane efflux pump protein NorA, which may export hydrophilic fluoroquinolones, is a common mechanism of resistance in S. aureus strains. This work evaluated the antimicrobial activity of the ethanolic extract from the leaves of Croton heliotropiifolius (EECH) against different bacterial and fungal strains, as well as investigating its modulating effect on the resistance to norfloxacin in a Staphylococcus aureus SA1199B overproducing the NorA efflux pump. Microdilution assays were used to assess the EECH’s antibacterial efficacy. The MIC of norfloxacin or ethidium bromide (EtBr) against the SA1199B strain was determined in the presence or absence of the EECH in order to assess the modifying influence on drug resistance. The EECH showed no activity against the Gram-positive and Gram-negative bacterial strains tested. The EECH also showed no antifungal activity against Candida albicans ATCC 10231. On the other hand, the extract reduced the MIC values for norfloxacin against SA1199B at subinhibitory concentrations. In addition, the EECH also reduced the MIC values of EtBr at subinhibitory concentrations, suggesting the occurrence of phytochemicals that inhibit efflux pumps. Molecular docking showed that retusin, a flavonoid found in the extract, could compete with norfloxacin at the orthosteric site of the NorA, indicating that it could be a potential efflux pump inhibitor. However, isolated retusin did not enhance the activity of norfloxacin or EtBr and it did not inhibit the EtBr efflux, showing that it is not a NorA inhibitor. Even though C. heliotropiifolius is a source of phytochemicals that function as adjuvants for norfloxacin, isolated retusin cannot be used in conjunction with norfloxacin to treat infections brought on by S. aureus that overproduces NorA. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

15 pages, 4935 KiB  
Article
Phytochemical Screening, and In Vitro Evaluation of the Antioxidant and Dermocosmetic Activities of Four Moroccan Plants: Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia
by Hicham Mechqoq, Sohaib Hourfane, Mohamed El Yaagoubi, Abdallah El Hamdaoui, Fouad Msanda, Jackson Roberto Guedes da Silva Almeida, Joao Miguel Rocha and Noureddine El Aouad
Cosmetics 2022, 9(5), 94; https://doi.org/10.3390/cosmetics9050094 - 9 Sep 2022
Cited by 18 | Viewed by 4059
Abstract
In this study, four Moroccan plants, Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia, were evaluated for their phytoconstituents and biological activities. Methanolic extracts of these plants were obtained by Soxhlet apparatus, phytochemical screening was performed, and the total [...] Read more.
In this study, four Moroccan plants, Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia, were evaluated for their phytoconstituents and biological activities. Methanolic extracts of these plants were obtained by Soxhlet apparatus, phytochemical screening was performed, and the total phenolic and flavonoid contents were determined. Then, the antioxidant and dermocosmetic activities of the methanolic extracts were evaluated. The obtained results revealed that the leaves and/or aerial parts contained tannins, polyphenols, flavonoids, coumarins, carotenoids, terpenoids and saponins. The higher total phenolic content values were recorded on Pistacia lentiscus and Halimium antiatlanticum with 396.64 ± 30.79 and 304.96 ± 55.61 mgGAE/gDW, respectively. The antioxidant activity was measured by DPPH, ABTS and FRAP assays, and showed that Pistacia lentiscus and Halimium antiatlanticum were the most active extracts, with, respectively, IC50 values of 3.705 ± 0.445 and 5.037 ± 0.122 µg/mL for DPPH. The same results were observed for the FRAP and ABTS assays. Those extracts also showed a strong collagenase inhibitory activity at 200 µg/mL, with 78.51 ± 2.27% for Pistacia lentiscus and 73.10 ± 8.52% for Halimium antiatlanticum. Adenocarpus artemisiifolius showed the highest elastase inhibition rate, with 76.30 ± 5.29%. This study disclosed the dermocosmetic potential of Halimium antiatlanticum and Adenocarpus artemisiifolius, two Moroccan endemic plants that can be traditionally used by local populations or exploited by the cosmetic industry. Full article
Show Figures

Figure 1

31 pages, 11939 KiB  
Review
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential
by Antoine Grivard, Isabelle Goubet, Luiz Miranda de Souza Duarte Filho, Valérie Thiéry, Sylvie Chevalier, Raimundo Gonçalves de Oliveira-Junior, Noureddine El Aouad, Jackson Roberto Guedes da Silva Almeida, Przemysław Sitarek, Lucindo José Quintans-Junior, Raphaël Grougnet, Hélène Agogué and Laurent Picot
Mar. Drugs 2022, 20(8), 524; https://doi.org/10.3390/md20080524 - 17 Aug 2022
Cited by 39 | Viewed by 5746
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation [...] Read more.
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale. Full article
(This article belongs to the Special Issue Marine Pigments)
Show Figures

Graphical abstract

12 pages, 1653 KiB  
Article
Phytocosmetic Emulsion Containing Extract of Morus nigra L. (Moraceae): Development, Stability Study, Antioxidant and Antibacterial Activities
by Rafaela Santos de Melo, Silvio Alan Gonçalves Bomfim Reis, Amanda Leite Guimarães, Naiane Darklei dos Santos Silva, Joao Miguel Rocha, Noureddine El Aouad and Jackson Roberto Guedes da Silva Almeida
Cosmetics 2022, 9(2), 39; https://doi.org/10.3390/cosmetics9020039 - 31 Mar 2022
Cited by 7 | Viewed by 5446
Abstract
Morus nigra L. is a species popularly known in the Northeast of Brazil as “amora miúra”. This species is a source of flavonoids with antioxidant activity. Antioxidants play an important role in the preservation of cosmetic formulations, and they neutralize free radicals. The [...] Read more.
Morus nigra L. is a species popularly known in the Northeast of Brazil as “amora miúra”. This species is a source of flavonoids with antioxidant activity. Antioxidants play an important role in the preservation of cosmetic formulations, and they neutralize free radicals. The objective of this study was to develop a topical emulsion containing leaf extract of Morus nigra L., as well as to evaluate the stability, antioxidant and antibacterial activities of the formulations. A crude hydroalcoholic (70%) extract of M. nigra leaves (MnCE) was submitted to high-performance liquid chromatography with diode-array detection (HPLC–DAD) analysis and incorporated into an anionic base emulsion. Antioxidant activity was evaluated according to the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, and the stability of the formulation was assessed for 90 days, submitting the emulsion to storage at 4, 20, and 37 °C. Microdilution techniques evaluated the antibacterial activity and a challenge test assessed the microbiological stability. Analysis by HPLC–DAD identified the flavonoids rutin and isoquercetin in the M. nigra extract. The emulsion and plant extract presented antioxidant activity, and the stability of the emulsion was preserved in terms of pH value and viscosity—which did not show significant changes, except for the spreadability, which was affected by the temperature. The antioxidant activity did not change significantly, except for the sample under 4 °C, which showed a considerable decrease in activity. The crude hydroalcoholic extract and formulation showed antimicrobial activity and the emulsion was considered stable in terms of organoleptic, physicochemical, and microbiological properties. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2022)
Show Figures

Figure 1

16 pages, 2769 KiB  
Article
Molecular Docking, Tyrosinase, Collagenase, and Elastase Inhibition Activities of Argan By-Products
by Hicham Mechqoq, Sohaib Hourfane, Mohamed El Yaagoubi, Abdallah El Hamdaoui, Jackson Roberto Guedes da Silva Almeida, Joao Miguel Rocha and Noureddine El Aouad
Cosmetics 2022, 9(1), 24; https://doi.org/10.3390/cosmetics9010024 - 14 Feb 2022
Cited by 38 | Viewed by 8840
Abstract
The argan tree (Argania spinosa (L.) Skeels) is one of the most important floristic resources in Morocco. This Moroccan endemic tree is known for its numerous therapeutic and medicinal uses. In addition to some medicinal and cosmetic uses, argan fruit pulp and [...] Read more.
The argan tree (Argania spinosa (L.) Skeels) is one of the most important floristic resources in Morocco. This Moroccan endemic tree is known for its numerous therapeutic and medicinal uses. In addition to some medicinal and cosmetic uses, argan fruit pulp and press cake are traditionally used by the Berber population for heating and feeding livestock. Molecular docking is an in silico approach that predicts the interaction between a ligand and a protein. This approach is mainly used in chemistry and pharmacology of natural products as a prediction tool with the purpose of selecting plant extracts or fractions for in vitro tests. The aim of this research is to study the evaluation of potential tyrosinase, collagenase, and elastase inhibitory activities of argan fruit press-cake and pulp extracts. Extracts were evaluated for their total phenolic content (TPC), and the major polyphenols of both press-cake and pulp extracts were submitted to molecular docking in order to determine the mechanisms of action of these compounds. Obtained results revealed that fruit pulp had the strongest dermocosmetic activities, as well as the highest TPC, with values above 55 mg gallic-acid equivalent per gram of dry matter (mgeq AG/gDM). Moreover, those results were positively correlated with the docking findings, suggesting that the pulp lead compounds have higher affinity with tyrosinase, collagenase, and elastase action sites. The results here presented are very promising and open new perspectives for the exploitation of argan-tree by-products as cosmetic agents towards the development of new anti-aging products. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2022)
Show Figures

Figure 1

25 pages, 2519 KiB  
Article
Anti-Inflammatory and Physicochemical Characterization of the Croton rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin
by Anita Oliveira Brito Pereira Bezerra Martins, Almir Gonçalves Wanderley, Isabel Sousa Alcântara, Lindaiane Bezerra Rodrigues, Francisco Rafael Alves Santana Cesário, Maria Rayane Correia de Oliveira, Fyama Ferreira e Castro, Thaís Rodrigues de Albuquerque, Maria Sanadia Alexandre da Silva, Jaime Ribeiro-Filho, Henrique Douglas Melo Coutinho, Paula Passos Menezes, Lucindo José Quintans-Júnior, Adriano Antunes de Souza Araújo, Marcello Iriti, Jackson Roberto Guedes da Silva Almeida and Irwin Rose Alencar de Menezes
Biology 2020, 9(6), 114; https://doi.org/10.3390/biology9060114 - 30 May 2020
Cited by 18 | Viewed by 4702
Abstract
Croton rhamnifolioides is used in popular medicine for the treatment of inflammatory diseases. The objective of this study was to characterize and evaluate the anti-inflammatory effect of C. rhamnifolioides essential oil complexed in β-cyclodextrin (COEFC). The physicochemical characterization of the complexes was performed [...] Read more.
Croton rhamnifolioides is used in popular medicine for the treatment of inflammatory diseases. The objective of this study was to characterize and evaluate the anti-inflammatory effect of C. rhamnifolioides essential oil complexed in β-cyclodextrin (COEFC). The physicochemical characterization of the complexes was performed using different physical methods. The anti-inflammatory activity was evaluated in vivo by ear edema, paw edema, cotton pellet-induced granuloma, and vascular permeability by Evans blue extravasation. The mechanism of action was validated by molecular docking of the major constituent into the cyclooxygenase-2 (COX-2 enzyme). All doses of the COEFC reduced acute paw edema induced by carrageenan and dextran, as well as vascular permeability. Our results suggest the lowest effective dose of all samples inhibited the response induced by histamine or arachidonic acid as well as the granuloma formation. The complexation process showed that the pharmacological effects were maintained, however, showing similar results using much lower doses. The results demonstrated an involvement of the inhibition of pathways dependent on eicosanoids and histamine. Complexation of β-cyclodextrin/Essential oil (β-CD/EO) may present an important tool in the study of new compounds for the development of anti-inflammatory drugs. Full article
Show Figures

Figure 1

17 pages, 1502 KiB  
Article
Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury
by Tiago Fonseca Silva, José Robson Neves Cavalcanti Filho, Mariana Mirelle Lima Barreto Fonsêca, Natalia Medeiros dos Santos, Ana Carolina Barbosa da Silva, Adrielle Zagmignan, Afonso Gomes Abreu, Ana Paula Sant’Anna da Silva, Vera Lúcia de Menezes Lima, Nicácio Henrique da Silva, Lívia Macedo Dutra, Jackson Roberto Guedes da Silva Almeida, Márcia Vanusa da Silva, Maria Tereza dos Santos Correia and Luís Cláudio Nascimento da Silva
Pharmaceuticals 2020, 13(3), 46; https://doi.org/10.3390/ph13030046 - 16 Mar 2020
Cited by 18 | Viewed by 4282
Abstract
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) [...] Read more.
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions. Full article
(This article belongs to the Special Issue Novel Antibacterial Agents)
Show Figures

Figure 1

14 pages, 1088 KiB  
Article
Bioguided Purification of Active Compounds from Leaves of Anadenanthera colubrina var. cebil (Griseb.) Altschul
by Daniel Rodrigo Cavalcante de Araújo, Túlio Diego da Silva, Wolfgang Harand, Claudia Sampaio de Andrade Lima, João Paulo Ferreira Neto, Bárbara de Azevedo Ramos, Tamiris Alves Rocha, Harley da Silva Alves, Rayane Sobrinho de Sousa, Ana Paula de Oliveira, Luís Cláudio Nascimento da Silva, Jackson Roberto Guedes da Silva Almeida, Márcia Vanusa da Silva and Maria Tereza dos Santos Correia
Biomolecules 2019, 9(10), 590; https://doi.org/10.3390/biom9100590 - 8 Oct 2019
Cited by 15 | Viewed by 4140
Abstract
Anadenanthera colubrina var cebil (Griseb.) Altschul is a medicinal plant found throughout the Brazilian semi-arid area. This work performed a bioguided purification of active substances present in ethyl acetate extract from A. colubrina leaves. The anti-Staphylococcus aureus and antioxidant actions were used [...] Read more.
Anadenanthera colubrina var cebil (Griseb.) Altschul is a medicinal plant found throughout the Brazilian semi-arid area. This work performed a bioguided purification of active substances present in ethyl acetate extract from A. colubrina leaves. The anti-Staphylococcus aureus and antioxidant actions were used as markers of bioactivity. The extract was subjected to flash chromatography resulting in five fractions (F1, F2, F3, F4, and F5). The fractions F2 and F4 presented the highest antimicrobial action, with a dose able to inhibit 50% of bacteria growth (IN50) of 19.53 μg/mL for S. aureus UFPEDA 02; whereas F4 showed higher inhibitory action towards DPPH radical (2,2-diphenyl-1-picryl-hydrazyl-hydrate) [dose able to inhibit 50% of the radical (IC50) = 133 ± 9 μg/mL]. F2 and F4 were then subjected to preparative high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR), resulting in the identification of p-hydroxybenzoic acid and hyperoside as the major compounds in F2 and F4, respectively. Hyperoside and p-hydroxybenzoic acid presented IN50 values of 250 μg/mL and 500 μg/mL against S. aureus UFPEDA 02, respectively. However, the hyperoside had an IN50 of 62.5 μg/mL against S. aureus UFPEDA 705, a clinical isolate with multidrug resistant phenotype. Among the purified compounds, the proanthocyanidins obtained from F2 exhibited the higher antioxidant potentials. Taken together, these results highlight the potential of A. colubrina leaves as an alternative source of biomolecules of interest for the pharmaceutical, food, and cosmetic industries. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

18 pages, 3565 KiB  
Article
Contribution of Secondary Metabolites to the Gastroprotective Effect of Aqueous Extract of Ximenia americana L. (Olacaceae) Stem Bark in Rats
by Ticiana Parente Aragão, Lady Dayane Kalline Travassos dos Prazeres, Samara Alves Brito, Pedro José Rolim Neto, Larissa Araújo Rolim, Jackson Roberto Guedes da Silva Almeida, Germana Freire Rocha Caldas and Almir Gonçalves Wanderley
Molecules 2018, 23(1), 112; https://doi.org/10.3390/molecules23010112 - 9 Jan 2018
Cited by 16 | Viewed by 5424
Abstract
Ximenia americana L. (Olacaceae) is used in ethnomedicine as cicatrizant and for the treatment of gastric disorders. This study identified the chemical constituents of the aqueous extract of X. americana (XaAE) and evaluated its antiulcerogenic activity. After lyophilization, XaAE was analyzed by liquid [...] Read more.
Ximenia americana L. (Olacaceae) is used in ethnomedicine as cicatrizant and for the treatment of gastric disorders. This study identified the chemical constituents of the aqueous extract of X. americana (XaAE) and evaluated its antiulcerogenic activity. After lyophilization, XaAE was analyzed by liquid chromatography-mass spectrometry (LC-MS) and its antiulcerogenic effect was evaluated in acute gastric lesions induced by ethanol, acidified ethanol, and indomethacin. Antisecretory action, mucus production and the participation of sulfhydryl groups (–SH) and nitric oxide (NO) were also investigated. The chromatographic analysis identified procyanidins B and C and catechin/epicatechin as major compounds. Oral administration of XaAE (100, 200 and 400 mg/kg) inhibited the gastric lesions induced by ethanol (76.1%, 77.5% and 100%, respectively), acidified ethanol (44.9%, 80.6% and 94.9%, respectively) and indomethacin (56.4%, 52.7% and 64.9%, respectively). XaAE reduced gastric contents and acidity (51.4% and 67.7%, respectively) but did not alter the production of gastric mucus. The reduction of the -SH and NO groups promoted by N-ethylmaleimide (NEM) and Nω-nitro-l-arginine-methyl-ester (L-NAME) respectively, reduced the gastroprotective effect of XaAE. In conclusion, XaAE has gastroprotective activity mediated in part by -SH, NO and antisecretory activity. This antiulcer action was initially correlated to its major constituents, procyanidins B and C and catechin/epicatechin. Full article
Show Figures

Figure 1

13 pages, 2043 KiB  
Article
Non-Polar Natural Products from Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile (Bromeliaceae)
by Ole Johan Juvik, Bjarte Holmelid, George W. Francis, Heidi Lie Andersen, Ana Paula De Oliveira, Raimundo Gonçalves de Oliveira Júnior, Jackson Roberto Guedes da Silva Almeida and Torgils Fossen
Molecules 2017, 22(9), 1478; https://doi.org/10.3390/molecules22091478 - 6 Sep 2017
Cited by 10 | Viewed by 6233
Abstract
Extensive regional droughts are already a major problem on all inhabited continents and severe regional droughts are expected to become an increasing and extended problem in the future. Consequently, extended use of available drought resistant food plants should be encouraged. Bromelia laciniosa, [...] Read more.
Extensive regional droughts are already a major problem on all inhabited continents and severe regional droughts are expected to become an increasing and extended problem in the future. Consequently, extended use of available drought resistant food plants should be encouraged. Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile are excellent candidates in that respect because they are established drought resistant edible plants from the semi-arid Caatinga region. From a food safety perspective, increased utilization of these plants would necessitate detailed knowledge about their chemical constituents. However, their chemical compositions have previously not been determined. For the first time, the non-polar constituents of B. laciniosa, N. variegata and E. spectabile have been identified. This is the first thorough report on natural products from N. variegata, E. spectabile, and B. laciniosa. Altogether, 20 non-polar natural products were characterized. The identifications were based on hyphenated gas chromatography-high resolution mass spectrometry (GC-HRMS) and supported by 1D and 2D Nuclear Magnetic Resonance (NMR) plant metabolomics. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

11 pages, 3799 KiB  
Article
Antinociceptive Effect of the Essential Oil from Croton conduplicatus Kunth (Euphorbiaceae)
by Raimundo Gonçalves De Oliveira Júnior, Christiane Adrielly Alves Ferraz, Juliane Cabral Silva, Ana Paula De Oliveira, Tâmara Coimbra Diniz, Mariana Gama E Silva, Lucindo José Quintans Júnior, Ana Valéria Vieira De Souza, Uiliane Soares Dos Santos, Izabel Cristina Casanova Turatti, Norberto Peporine Lopes, Vitor Prates Lorenzo and Jackson Roberto Guedes da Silva Almeida
Molecules 2017, 22(6), 900; https://doi.org/10.3390/molecules22060900 - 30 May 2017
Cited by 22 | Viewed by 5842
Abstract
Medicinal plants have been widely used in the treatment of chronic pain. In this study, we describe the antinociceptive effect of the essential oil from Croton conduplicatus (the EO 25, 50, and 100 mg/kg, i.p.), a medicinal plant native to Brazil. Antinociceptive activity [...] Read more.
Medicinal plants have been widely used in the treatment of chronic pain. In this study, we describe the antinociceptive effect of the essential oil from Croton conduplicatus (the EO 25, 50, and 100 mg/kg, i.p.), a medicinal plant native to Brazil. Antinociceptive activity was investigated by measuring the nociception induced by acetic acid, formalin, hot plate and carrageenan. A docking study was performed with the major constituents of the EO (E-caryophyllene, caryophyllene oxide, and camphor). The EO reduced nociceptive behavior at all doses tested in the acetic acid-induced nociception test (p < 0.05). The same was observed in both phases (neurogenic and inflammatory) of the formalin test. When the hot-plate test was conducted, the EO (50 mg/kg) extended the latency time after 60 min of treatment. The EO also reduced leukocyte migration at all doses, suggesting that its antinociceptive effect involves both central and peripheral mechanisms. Pretreatment with glibenclamide and atropine reversed the antinociceptive effect of the EO on the formalin test, suggesting the involvement of KATP channels and muscarinic receptors. The docking study revealed a satisfactory interaction profile between the major components of the EO and the different muscarinic receptor subtypes (M2, M3, and M4). These results corroborate the medicinal use of C. conduplicatus in folk medicine. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Show Figures

Figure 1

7 pages, 432 KiB  
Communication
Azaphenanthrene Alkaloids with Antitumoral Activity from Anaxagorea dolichocarpa Sprague & Sandwith (Annonaceae)
by Ana Silvia Suassuna Carneiro Lúcio, Jackson Roberto Guedes Da Silva Almeida, José Maria Barbosa-Filho, João Carlos Lima Rodrigues Pita, Marianna Vieira Sobral Castello Branco, Margareth De Fátima Formiga Melo Diniz, Maria De Fátima Agra, Emidio V.L. Da-Cunha, Marcelo Sobral Da Silva and Josean Fechine Tavares
Molecules 2011, 16(8), 7125-7131; https://doi.org/10.3390/molecules16087125 - 22 Aug 2011
Cited by 18 | Viewed by 8352
Abstract
Phytochemical investigation of Anaxagorea dolichocarpa Sprague & Sandwith led to isolation of three azaphenanthrene alkaloids: eupolauramine, sampangine and imbiline 1. Their chemical structures were established on the basis of spectroscopic data from IR, HR-ESI-MS, NMR (including 2D experiments) and comparison with the literature. [...] Read more.
Phytochemical investigation of Anaxagorea dolichocarpa Sprague & Sandwith led to isolation of three azaphenanthrene alkaloids: eupolauramine, sampangine and imbiline 1. Their chemical structures were established on the basis of spectroscopic data from IR, HR-ESI-MS, NMR (including 2D experiments) and comparison with the literature. Sampangine and imbiline 1 are being described in the Anaxagorea genus for the first time. Eupolauramine and sampangine show concentration-dependent antitumoral activity in leukemic cells K562 with IC50 of 18.97 and 10.95 µg/mL, respectively. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Show Figures

Figure 1

Back to TopTop