water-logo

Journal Browser

Journal Browser

Pollution Mechanisms and Source Apportionment of Typical Pollutants in Aquatic Environments

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: 5 November 2025 | Viewed by 683

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Interests: sources analysis; migration and transformation of biomass; evolution of water chemistry; water quality assessment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the pollution mechanisms and source apportionment of typical pollutants in various water systems within a watershed, including rivers, lakes, and groundwater. It aims to provide a comprehensive and in-depth academic exchange platform for researchers of water environments. The content of this Special Issue will cover water quality assessments, the pollution mechanisms of typical pollutants, the migration and transformation processes of pollutants, source tracking of pollution, the development and application of water quality models, as well as ecological impact assessments caused by water quality changes. These research findings will not only help us more accurately understand the dynamics of water quality within the watershed, but also provide a solid theoretical basis for formulating scientific and effective water quality protection measures. We sincerely invite water environment scientists, engineers, policymakers, and water resource managers to participate in this Special Issue. Our goal is to promote comprehensive exchanges across disciplines and fields and jointly advance the process of water environmental protection and sustainable development. We look forward to your active contributions to the academic developments and practical applications in this field.

Prof. Dr. Qianqian Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rivers, lakes, and groundwater
  • water quality
  • hydrochemistry
  • pollution sources
  • sources analysis
  • assessment methods
  • isotope technology
  • machine learning
  • multivariate statistical techniques
  • models

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2210 KiB  
Article
A New Insight into Sulfate Contamination in Over-Exploited Groundwater Areas: Integrating Multivariate and Geostatistical Techniques
by Li Wang, Qi Wang, Wenchang Li, Yifeng Liu and Qianqian Zhang
Water 2025, 17(10), 1530; https://doi.org/10.3390/w17101530 - 19 May 2025
Viewed by 112
Abstract
The issue of sulfate (SO42−) pollution in groundwater has already attracted widespread attention from scientists. However, at the large-scale regional level, especially in areas with groundwater overexploitation, the pollution mechanisms and sources of sulfate remain unclear. This study innovatively investigates [...] Read more.
The issue of sulfate (SO42−) pollution in groundwater has already attracted widespread attention from scientists. However, at the large-scale regional level, especially in areas with groundwater overexploitation, the pollution mechanisms and sources of sulfate remain unclear. This study innovatively investigates the spatial distribution characteristics and sources of SO42− in the groundwater of the Hutuo River alluvial fan area, an understudied region facing significant environmental challenges due to overexploitation. Utilizing a combination of hydrochemical analysis, multivariate statistical methods, and geostatistical techniques, we reveal that the mean concentration of SO42− is significantly higher (127 mg/L) in overexploited areas, with an exceedance rate of 5.1%. Our findings uncover substantial spatial heterogeneity in SO42− concentrations, with particularly high levels in the river valley plain (RVP) (175 mg/L) and the upper area of the alluvial fan (UAF) (169 mg/L), which we attribute to distinct human activities. A novel contribution of our study is the identification of groundwater depth as a critical factor influencing SO42− distribution (p < 0.001). We also demonstrate that the higher proportion of sulfate-type waters in overexploited areas is primarily due to the accelerated oxidation of sulfide minerals caused by overexploitation. Principal component analysis (PCA) and correlation analysis further identify the main sources of SO42− as industrial wastewater, domestic sewage, the dissolution of evaporites, and the oxidation of sulfide minerals. By integrating geostatistical techniques, we present the spatial distribution of sulfate pollution sources at a fine scale, providing a comprehensive and spatially explicit understanding of the pollution dynamics. These results offer a novel scientific basis for developing targeted strategies to control sulfate pollution and protect the sustainable use of regional groundwater resources. Our study thus fills a critical knowledge gap and provides actionable insights for groundwater management in similar regions facing overexploitation challenges. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Study on the Pollution Mechanism and Driving Factors of Groundwater Quality in Typical Industrial Areas of China
by Li Wang, Qi Wang and Dechao Zheng
Water 2025, 17(10), 1420; https://doi.org/10.3390/w17101420 - 8 May 2025
Viewed by 264
Abstract
Uncovering the characteristics of groundwater pollution and its driving mechanisms are crucial for maintaining its ecological functions. This study focuses on hydrochemical changes and their driving factors in groundwater from different aquifers in industrial zones, taking Zibo City, Shandong Province, China, as the [...] Read more.
Uncovering the characteristics of groundwater pollution and its driving mechanisms are crucial for maintaining its ecological functions. This study focuses on hydrochemical changes and their driving factors in groundwater from different aquifers in industrial zones, taking Zibo City, Shandong Province, China, as the research area. During the dry and flood seasons of 2022, samples of phreatic water in pore media (17 sites) and karst confined water (23 sites) were collected and monitored. Piper trilinear diagrams, Gibbs diagrams, ion ratio diagrams, and a principal component analysis (PCA) were used for in-depth analyses. Pore phreatic water had higher excess rates of Na+, Cl, and NO3 than karst confined water, which indicated a greater degree of human impact compared with karst confined water. The main hydrochemical type was HCO3·SO4-Ca, but in the dry season, pore phreatic water shifted to HCO3·SO4·Cl-Ca. The ion ratios and PCA indicated that the groundwater quality was mainly controlled by water–rock interactions and industrial activities. In the flood season, pore phreatic water was influenced by evaporite dissolution, industrial activities, and domestic sewage, while in the dry season, it was affected by halite and carbonate weathering dissolution and domestic sewage. Karst confined water was controlled by water–rock interactions and industrial activities in both seasons. The findings reveal that the key drivers of groundwater quality displayed significant differences depending on the aquifer type and seasonal variations. As such, customized approaches are essential to efficiently address and counteract the decline in groundwater quality. Full article
Show Figures

Figure 1

17 pages, 1212 KiB  
Article
Combining Fluorescent Organic Substances, Ions, and Oxygen-18 to Trace Diverse Water Sources of River Flow in a Hilly Catchment
by Zhi-Xiang Sun, Yan-Ting Ao, Jun-Fang Cui, Xiao-Yu Li, Xiang-Yu Tang, Jian-Hua Cheng and Lu Chen
Water 2025, 17(8), 1222; https://doi.org/10.3390/w17081222 - 19 Apr 2025
Viewed by 168
Abstract
Reliable identification of river hydrograph separation is crucial for prioritizing water source areas to be protected from pollution. A field study was carried out in a hilly catchment with diverse land uses, located in Southwest China. A novel water-tracing method, combining the ratio [...] Read more.
Reliable identification of river hydrograph separation is crucial for prioritizing water source areas to be protected from pollution. A field study was carried out in a hilly catchment with diverse land uses, located in Southwest China. A novel water-tracing method, combining the ratio of two conservative fluorescent components of dissolved organic matter, two ion ratios, and oxygen-18, was proposed for river hydrograph separation with MixSIAR. During a rain event with the longest preceding no-rain period, a set of four tracers were found to be applicable to drainage areas with diverse land uses. Notably, a drier antecedent soil moisture condition could favor the occurrence of more tracers qualified for distinguishing multiple water sources of river flow. Full article
Show Figures

Figure 1

Back to TopTop