Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil
Abstract
1. Introduction
2. Numerical Simulation Method
2.1. Turbulence Model
- (1)
- SST k-ω model
- (2)
- DDES model based on SST k-ω model
2.2. Nonlinear Cavitation Model
2.3. Numerical Method for Flow–Acoustic Field Coupling
2.3.1. Powell’s Vortex Sound Theory
2.3.2. Prediction of Cavitation Volume Pulsation Noise
3. Calculation and Experimental Verification
3.1. Research Model
3.2. Mesh and Mesh Independence Analysis
3.3. Experimental Verification
3.3.1. Experimental Method
3.3.2. Experimental Results
4. Results and Discussions
4.1. Numerical Analysis of Cavitation Flow Field
4.1.1. Spatiotemporal Dynamics of Cavitation Bubbles
4.1.2. Fluctuation Characteristics of Hydrofoil Lift and Drag Forces
4.1.3. Vortex Structure Evolution of Hydrofoil Flow Field
4.1.4. Dynamic Mode Decomposition of Hydrofoil Flow Field
4.2. Hydrofoil Cavitation–Vortex Energy Conversion Analysis
4.3. Analysis of Numerical Simulation Results of Cavitation-Induced Noise
4.3.1. Cavitation-Induced Noise Sound Field Distribution
4.3.2. Sound Source Distribution of Hydrofoil Cavitation Flow Field
5. Conclusions
- (1)
- The temporal evolution of vapor cavities over a typical cycle shows good agreement with high-speed photographic observations. The lift and drag forces exhibit quasi-periodic oscillations with alternating peaks and troughs, while shock-wave propagation generates sequential pressure spikes at upstream monitoring points. Phase differences in pressure fluctuation coefficients were observed across locations, with numerical amplitudes generally smaller than experimental values. The dominant pressure fluctuation frequency of about 30 Hz corresponds to the cavity shedding cycle, indicating that periodic growth and shedding of trailing-edge vortices drive cyclic pressure variations and force oscillations. Vortex structures were primarily concentrated near liquid–vapor interfaces and in the wake, highlighting the role of cavitation in vortex evolution. Dynamic Mode Decomposition (DMD) of the pressure field further revealed that the dominant modes occur at integer multiples of cavity pulsation frequencies, and the coherent structures resemble multi-scale cavities and vortices.
- (2)
- Analysis of vorticity transport confirmed that vortex stretching is intensified near cavitation regions and contributes to cavity growth, while the baroclinic torque term governs the collapse of cloud cavitation.
- (3)
- Cavitation-induced noise consisted of loading noise and collapse-induced noise. The loading noise displayed dipole-type distribution characteristics linked to surface force fluctuations, whereas monopole-type noise associated with cavity volume pulsations peaked near 30 Hz. The main acoustic sources were concentrated in cloud cavitation shedding regions, confirming the strong coupling between cavitation dynamics and radiated sound.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Jia, Z.; Zhao, Z.; Zhou, L. Validation and simulation of cavitation flow in a centrifugal pump by filter-based turbulence model. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1724–1738. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Zhang, S. Effect of inlet sweepback angle on the cavitation performance of an inducer. Eng. Appl. Comput. Fluid Mech. 2019, 13, 713–723. [Google Scholar] [CrossRef]
- Geng, L.; Escaler, X. Assessment of RANS turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady cloud cavitation. Eng. Appl. Comput. Fluid Mech. 2020, 14, 151–167. [Google Scholar] [CrossRef]
- Peng, X.X.; Ji, B.; Cao, Y.; Xu, L.; Zhang, G.; Luo, X.; Long, X. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiphase Flow 2016, 79, 10–22. [Google Scholar] [CrossRef]
- Chen, G.; Wang, G.; Hu, C.; Huang, B.; Gao, Y.; Zhang, M. Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel. Int. J. Multiphase Flow 2015, 72, 133–140. [Google Scholar] [CrossRef]
- Cheng, H.; Long, X.; Ji, B.; Peng, X.; Farhat, M. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. Int. J. Multiph. Flow 2021, 134, 103441. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Ji, B.; Long, X.-P.; Huai, W.-X.; Farhat, M. A review of cavitation in tip-leakage flow and its control. J. Hydrodyn. 2021, 33, 226–242. [Google Scholar] [CrossRef]
- Sezen, S.; Atlar, M.; Fitzsimmons, P.; Sasaki, N.; Tani, G.; Yilmaz, N.; Aktas, B. Numerical cavitation noise prediction of a benchmark research vessel propeller. Ocean Eng. 2020, 211, 107549. [Google Scholar] [CrossRef]
- Kamali-Moghadam, R.; Javadi, K.; Kiani, F. Assessment of the LES-WALE and Zonal-DES turbulence models in simulation of the flow structures around the finite circular cylinder. J. Appl. Fluid Mech. 2016, 9, 909–923. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, H.; Ji, B. LES investigation of the noise characteristics of sheet and tip leakage vortex cavitating flow. Int. J. Multiph. Flow 2022, 146, 103880. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, H.; Ji, B. Euler–Lagrange study of cavitating turbulent flow around a hydrofoil. Phys. Fluids 2021, 33, 112108. [Google Scholar] [CrossRef]
- Li, Z.; Qian, Z.; Ji, B. Transient cavitating flow structure and acoustic analysis of a hydrofoil with whalelike wavy leading edge. Appl. Math. Model. 2020, 85, 60–88. [Google Scholar] [CrossRef]
- Hu, J.; Ning, X.; Zhao, W.; Li, F.; Ma, J.; Zhang, W.; Sun, S.; Zou, M.; Lin, C. Numerical simulation of the cavitating noise of contra-rotating propellers based on detached eddy simulation and the Ffowcs Williams–Hawkings acoustics equation. Phys. Fluids 2021, 33, 115117. [Google Scholar] [CrossRef]
- Kinzel, M.; Lindau, J.; Peltier, L.; Kunz, R.; Sankaran, V. Detached-Eddy simulations for cavitating flows. In Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, USA, 25–28 June 2007. [Google Scholar]
- Sedlar, M.; Ji, B.; Kratky, T.; Rebok, T.; Huzlik, R. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil. Ocean Eng. 2016, 123, 357–382. [Google Scholar] [CrossRef]
- Qin, X.; Chen, Y.; Feng, X.; Shao, X.; Deng, J. A numerical investigation concerning wall-nucleation effects of the inception of sheet cavitation. Int. J. Multiph. Flow 2025, 185, 105142. [Google Scholar] [CrossRef]
- Kumar, P.; Kadivar, E.; el Moctar, O. Experimental study of cavitation control on a hydrofoil with bio-inspired riblets using proper orthogonal decomposition. Ocean. Eng. 2025, 334, 121500. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically I. General theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 1952, 211, 564–587. [Google Scholar]
- Qian, Z.H.; Han, H.; Zeng, Y.S.; Peng, X.X.; Luo, X.W. Universal law for identifying the singing vortex. Int. J. Multiph. Flow 2024, 181, 104993. [Google Scholar] [CrossRef]
- Williams, J.F.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar]
- Seol, H.; Suh, J.-C.; Lee, S. Development of hybrid method for the prediction of underwater propeller noise. J. Sound Vib. 2005, 288, 345–360. [Google Scholar] [CrossRef]
- Wei, A.; Wang, S.; Gao, X.; Qiu, L.; Yu, L.; Zhang, X. Investigation of unsteady cryogenic cavitating flow and induced noise around a three-dimensional hydrofoil. Phys. Fluids 2022, 34, 042120. [Google Scholar] [CrossRef]
- Sakamoto, N.; Kamiirisa, H. Prediction of near field propeller cavitation noise by viscous CFD with semiempirical approach and its validation in model and full scale. Ocean Eng. 2018, 168, 41–59. [Google Scholar] [CrossRef]
- Sun, T.; Ding, Y.; Huang, H.; Xie, B.; Zhang, G. Numerical study on the effects of modulated ventilation on unsteady cavity dynamics and noise patterns. Phys. Fluids 2021, 33, 123307. [Google Scholar] [CrossRef]
- Powell, A. Theory of vortex sound. J. Acoust. Soc. Am. 1964, 36, 177. [Google Scholar] [CrossRef]
- Howe, M.S. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 2006, 71, 625. [Google Scholar]
- Si, Q.; Ali, A.; Yuan, J.; Fall, I.; Muhammad Yasin, F. Flow-induced noises in a centrifugal pump: A review. Sci. Adv. Mater. 2019, 11, 909. [Google Scholar] [CrossRef]
- Si, Q.; Ali, A.; Liao, M.; Yuan, J.; Gu, Y.; Yuan, S.; Bois, G. Assessment of cavitation noise in a centrifugal pump using acoustic finite element method and spherical cavity radiation theory. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2173302. [Google Scholar] [CrossRef]
- Nishino, T.; Roberts, G.T.; Zhang, X. Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect. J. Fluids Struct. 2008, 24, 18–33. [Google Scholar] [CrossRef]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent User’s Guide; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Žnidarčič, A.; Mettin, R.; Dular, M. Modeling cavitation in a rapidly changing pressure field—Application to a small ultrasonic horn. Ultrason. Sonochem. 2015, 22, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Sagaut, P. Large eddy simulation for incompressible flows: An introduction. Meas. Sci. Technol. 2001, 12, 1745. [Google Scholar] [CrossRef]
- Kornhaas, M.; Sternel, D.C.; Schfer, M. Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In Quality and Reliability of Large-Eddy Simulations; Springer: Dordrecht, The Netherlands, 2008; Volume 12, pp. 119–130. [Google Scholar]
- Qiu, N. Study on Cavitation Erosion Test of Pump Impeller Material. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research Proceedings of the Summer Program; Stanford University: Stanford, CA, USA, 1988; Volume 1, pp. 193–208. [Google Scholar]
- Yang, C.; Zhang, J.; Huang, Z. Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil. Phys. Fluids 2022, 34, 125105. [Google Scholar] [CrossRef]
























| Mesh Scheme | Mesh1 | Mesh2 | Mesh3 | Mesh4 |
|---|---|---|---|---|
| Number of Grids | 2.09 × 106 | 4.18 × 106 | 6.27 × 106 | 8.36 × 106 |
| Lift coefficient Cl | 1.324 | 1.314 | 1.308 | 1.305 |
| Relative error (%) | / | 1.16 | 0.69 | 0.23 |
| Drag coefficient Cd | 0.0412 | 0.0404 | 0.0397 | 0.0396 |
| Relative error (%) | / | 4.04 | 2.02 | 0.25 |
| Method | Dominant Frequency (Hz) |
|---|---|
| Simulation (FFT) | 30.15 |
| Simulation (DMD) | 31.00 |
| Experiment (Cavitation shedding) | 30.05 |
| Experiment (SPL) | 29.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, D.; Xia, X.; Lu, Y.; Yuan, J.; Si, Q. Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil. Water 2025, 17, 2776. https://doi.org/10.3390/w17182776
Tian D, Xia X, Lu Y, Yuan J, Si Q. Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil. Water. 2025; 17(18):2776. https://doi.org/10.3390/w17182776
Chicago/Turabian StyleTian, Ding, Xin Xia, Yu Lu, Jianping Yuan, and Qiaorui Si. 2025. "Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil" Water 17, no. 18: 2776. https://doi.org/10.3390/w17182776
APA StyleTian, D., Xia, X., Lu, Y., Yuan, J., & Si, Q. (2025). Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil. Water, 17(18), 2776. https://doi.org/10.3390/w17182776

