water-logo

Journal Browser

Journal Browser

The PFAS (Perfluoroalkyl and Polyfluoroalkyl Substances) Challenges: Environmental Impact and Alternative Treatments

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: closed (22 April 2025) | Viewed by 945

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25121 Brescia, Italy
Interests: water reuse; circular economy; resource recovery; advanced biological wastewater treatment; treatment for sludge minimization; membrane processes; assessment of wastewater treatment plants
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, 25123 Brescia, Italy
Interests: activated sludge microfauna and biomass; biodegradation of chemical substances and mixtures; biodeterioration; bioassays; microbiology of drinking water
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

One of the most urgent problems in water management and treatment is the presence of per- and polyfluoroalkyl compounds (PFAS). Due to their ubiquitous presence in the environment and relatively recent commercial synthesis, these pollutants —known for their persistence to degradation—raise serious concerns. Despite their widespread use in various industrial applications, knowledge of the long-term risks associated with human and environmental exposure remains limited. Given their nature and potential for bioaccumulation, it is crucial to adopt a multidisciplinary approach that examines the full spectrum of their impact, ranging from potential toxic effects on human health to broader environmental implications.

This Special Issue presents a comprehensive analysis of PFAS in an effort to further our understanding of these substances. We invite to submit research articles, innovative methodologies, protocols, critical reviews that explore various aspects of PFAS. Topics of interest include, but are not limited to, exposure pathways, hazard assessment, metabolic processes, environmental fate, and the development of effective treatment and degradation methods. We are also particularly interested in studies that highlight the effects of PFAS on biomasses adopted in traditional wastewater treatment plants, and works that face challenges when dealing with these persistent contaminants.

Dr. Alessandro Abbà
Dr. Maria Cristina Collivignarelli
Prof. Dr. Roberta Pedrazzani
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • PFAS
  • water and wastewater management
  • monitoring
  • risk-based approach
  • toxicity
  • human effects
  • environmental effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

28 pages, 2946 KiB  
Review
Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) Adsorption onto Different Adsorbents: A Critical Review of the Impact of Their Chemical Structure and Retention Mechanisms in Soil and Groundwater
by Mehak Fatima, Celine Kelso and Faisal Hai
Water 2025, 17(9), 1401; https://doi.org/10.3390/w17091401 - 7 May 2025
Viewed by 621
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are emerging contaminants of concern as they persist in natural environments due to their unique chemical structures. This paper critically reviewed the adsorption of PFOA and PFOS, depending on their chemical structure, by different adsorbents as [...] Read more.
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are emerging contaminants of concern as they persist in natural environments due to their unique chemical structures. This paper critically reviewed the adsorption of PFOA and PFOS, depending on their chemical structure, by different adsorbents as well as soil. Adsorption of PFOS generally surpasses that of PFOA across various adsorbents. Despite having the same number of carbons, PFOS exhibits greater hydrophobicity due to two major structural differences: firstly, it has one extra CF2 unit and secondly, the sulfonate group in PFOS, being a relatively hard base, readily adsorbs on oxide surfaces, enhancing its adsorption compared to the carboxylate group in PFOA. While comparing activated carbon (AC) adsorption performance, powdered activated carbon (PAC) demonstrates higher adsorption capacity than granular activated carbon (GAC) for PFOS and PFOA. Anion exchange resin (AER) outperforms other adsorbents, with a maximum adsorption capacity for PFOS twice that of PFOA. Carbon nanotubes (CNTs) exhibit two-fold higher adsorption for PFOS compared to PFOA, with single-walled CNTs showing a distinct advantage. Overall, the removal of PFOS and PFOA under similar conditions on different adsorbents is observed to be in the following order: AER > single-walled CNTs > AC. Moreover, AER, single-walled CNTs, and AC exhibited higher adsorption capacities for PFOS than PFOA. In situ remediation studies of PFOA/S-contaminated soil using colloidal activated carbon show a reduction in concentration to below acceptable limits within 12–24 months. The theoretical and experimental studies cited in this review highlight the role of air–water interfacial adsorption in retaining PFOA and PFOS as a function of their charged head groups during their transport in unsaturated porous media. Full article
Show Figures

Graphical abstract

Back to TopTop