A Comparative Study of Biological and Ozonation Approaches for Conventional and Per- and Polyfluoroalkyl Substances Contaminant Removal from Landfill Leachate
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
- -
- A plexiglass cylindrical reactor of 19 cm in diameter, 100 cm in height, and a total volume of 28 L, which was partially packed with 13 L of Kaldness-type plastic carriers. These wheel-shaped elements (7 mm in height, 8 mm in diameter) offer a specific surface area of 690 m2/m3, a density of 0.95 g/cm3, and a porosity of 0.75. The media were secured between two perforated plates to maintain a fixed bed structure.
- -
- A volumetric pump was used to recirculate liquid through the bed at a rate of 90 L/h.
- -
- Two peristaltic pumps are used to supply leachate and acetate, the latter acting as an external substrate to facilitate nitrogen elimination.
- -
- Two diffusers positioned atop the bed supply pure oxygen to the process.
- -
- A motorised valve is required for the gravity drainage of effluent.
- -
- A head loss measuring probe with an associated display.
- -
- A programme logic control (PLC) for automation of the system.
- -
- A peristaltic pump operating at a flow rate of 70 L/h, which was used to withdraw liquid from the SBBGR system;
- -
- A cylindrical glass reactor with a diameter of 85 mm, a height of 90 cm, and a total volume of 5 L;
- -
- An ozone generator (WEDECO Modular 8HC, Herford, Germany), operating with pure oxygen and providing an output of 0.5 to 8 gO3/h;
- -
- A thermocatalytic residual ozone destructor;
- -
- A UV ozone analyser (BMT 964, WEDECO, Herford, Germany) was used to measure the ozone concentration in the gas stream at the inlet and outlet of the ozone reactor.
2.2. Operational Schedule
2.3. Evaluation of Treatment Performance
2.4. Analytical Methods
- -
- 0–2 min: 5% B;
- -
- 2–4 min: linear gradient to 70% B;
- -
- 4–9 min: linear gradient to 100% B;
- -
- 9–14 min: 100% B;
- -
- 14–14.5 min: return to 5% B;
- -
- 14.5–20 min: column reconditioning.
3. Results and Discussion
3.1. SBBGR Start-Up
3.2. SBBGR and BIO-CHEM Process Performance
3.2.1. Conventional Pollutants Removal
3.2.2. PFAS Compounds Removal
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanda, S.; Berruti, F. Municipal Solid Waste Management and Landfilling Technologies: A Review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Cassano, D.; Zapata, A.; Brunetti, G.; Del Moro, G.; Di Iaconi, C.; Oller, I.; Malato, S.; Mascolo, G. Comparison of Several Combined/Integrated Biological-AOPs Setups for the Treatment of Municipal Landfill Leachate: Minimization of Operating Costs and Effluent Toxicity. Chem. Eng. J. 2011, 172, 250–257. [Google Scholar] [CrossRef]
- Chen, P.H. Assessment of Leachates from Sanitary Landfills: Impact of Age, Rainfall, and Treatment. Environ. Int. 1996, 22, 225–237. [Google Scholar] [CrossRef]
- Park, S.; Choi, K.S.; Joe, K.S.; Kim, W.H.; Kim, H.S. Variations of Landfill Leachate’s Properties in Conjunction with the Treatment Process. Environ. Technol. 2001, 22, 639–645. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of Landfill Leachate Plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Pivato, A.; Gaspari, L. Acute Toxicity Test of Leachates from Traditional and Sustainable Landfills Using Luminescent Bacteria. Waste Manag. 2006, 26, 1148–1155. [Google Scholar] [CrossRef]
- Schwarzbauer, J.; Heim, S.; Brinker, S.; Littke, R. Occurrence and Alteration of Organic Contaminants in Seepage and Leakage Water from a Waste Deposit Landfill. Water Res. 2002, 36, 2275–2287. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Blaney, L.; Kao, J.; Tyagi, R.D.; Zhang, T.C.; Surampalli, R.Y. Emerging Contaminants in Landfill Leachate and Their Sustainable Management. Environ. Earth Sci. 2015, 73, 1357–1368. [Google Scholar] [CrossRef]
- Singh, D.; Dikshit, A.K.; Dangi, M.B. Technological Advances in Per- and Polyfluoroalkyl Substances (PFAS) Removal from Landfill Leachate: Source Identification and Treatment Options. Emerg. Contam. 2025, 11, 100458. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, T.; Zhao, D. Treatment of Per- and Polyfluoroalkyl Substances in Landfill Leachate: Status, Chemistry and Prospects. Environ. Sci. Water Res. Technol. 2019, 5, 1814–1835. [Google Scholar] [CrossRef]
- Gallen, C.; Drage, D.; Eaglesham, G.; Grant, S.; Bowman, M.; Mueller, J.F. Australia-Wide Assessment of Perfluoroalkyl Substances (PFASs) in Landfill Leachates. J. Hazard. Mater. 2017, 331, 132–141. [Google Scholar] [CrossRef]
- Hamid, H.; Li, L.Y.; Grace, J.R. Review of the Fate and Transformation of Per- and Polyfluoroalkyl Substances (PFASs) in Landfills. Environ. Pollut. 2018, 235, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wei, X.; Liu, H.; Li, W.; Shi, D.; Qian, S.; Sun, W.; Yue, D.; Wang, X. Occurrence of Per- and Polyfluoroalkyl Substances (PFAS) in Municipal Solid Waste Landfill Leachates from Western China. Environ. Sci. Pollut. Res. 2022, 29, 69588–69598. [Google Scholar] [CrossRef] [PubMed]
- Busch, J.; Ahrens, L.; Sturm, R.; Ebinghaus, R. Polyfluoroalkyl Compounds in Landfill Leachates. Environ. Pollut. 2010, 158, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, I.; Gómez-Lavín, S.; Elizalde, M.P.; Urtiaga, A. Perfluorinated Alkyl Substances (PFASs) in Northern Spain Municipal Solid Waste Landfill Leachates. Chemosphere 2017, 168, 399–407. [Google Scholar] [CrossRef]
- Stoiber, T.; Evans, S.; Naidenko, O.V. Disposal of Products and Materials Containing Per- and Polyfluoroalkyl Substances (PFAS): A Cyclical Problem. Chemosphere 2020, 260, 127659. [Google Scholar] [CrossRef]
- Huang, S.; McDonald, J.A.; Kuchel, R.P.; Khan, S.J.; Leslie, G.; Tang, C.Y.; Mansouri, J.; Fane, A.G. Surface Modification of Nanofiltration Membranes to Improve the Removal of Organic Micropollutants: Linking Membrane Characteristics to Solute Transmission. Water Res. 2021, 203, 117520. [Google Scholar] [CrossRef]
- Ribarova, I.; Valchev, D.; Valentina, G.; Frugis, A. Presence of Per- and Polyfluoroalkyl Substances in Untreated Leachate from Regional Municipal Waste Landfills: A First Assessment for Bulgaria. J. Ecol. Eng. 2025, 26, 93–105. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Smalling, K.L.; Bolyard, S.C.; Field, J.A.; Furlong, E.T.; Gray, J.L.; Lozinski, D.; Reinhart, D.; et al. Landfill Leachate Contributes Per-/Poly-Fluoroalkyl Substances (PFAS) and Pharmaceuticals to Municipal Wastewater. Environ. Sci. Water Res. Technol. 2020, 6, 1300–1311. [Google Scholar] [CrossRef]
- Tolaymat, T.; Robey, N.; Krause, M.; Larson, J.; Weitz, K.; Parvathikar, S.; Phelps, L.; Linak, W.; Burden, S.; Speth, T.; et al. A Critical Review of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Landfill Disposal in the United States. Sci. Total Environ. 2023, 905, 167185. [Google Scholar] [CrossRef]
- Parvin, F.; Tareq, S.M. Impact of Landfill Leachate Contamination on Surface and Groundwater of Bangladesh: A Systematic Review and Possible Public Health Risks Assessment. Appl. Water Sci. 2021, 11, 100. [Google Scholar] [CrossRef]
- Ye, Y.; Titaley, I.A.; Kim-Fu, M.L.; Moll, A.R.; Field, J.A.; Barlaz, M.A. Release of Volatile Per- and Polyfluoroalkyl Substances from Plant Fiber-Based Food Packaging and Municipal Solid Waste to Gas under Simulated Landfill Conditions. Environ. Sci. Technol. 2024, 58, 21295–21304. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Song, X.; Montelius, M.; Carlsson, C. Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review. Environments 2024, 11, 203. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An Overview of the Environmental Pollution and Health Effects Associated with Waste Landfilling and Open Dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Lott, D.J.; Robey, N.M.; Fonseca, R.; Bowden, J.A.; Townsend, T.G. Behavior of Per- and Polyfluoroalkyl Substances (PFAS) in Pilot-Scale Vertical Flow Constructed Wetlands Treating Landfill Leachate. Waste Manag. 2023, 161, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Chen, H.; Reinhard, M.; Yi, X.; He, Y.; Gin, K.Y.-H. Perfluoroalkyl and Polyfluoroalkyl Substances Removal in a Full-Scale Tropical Constructed Wetland System Treating Landfill Leachate. Water Res. 2017, 125, 418–426. [Google Scholar] [CrossRef]
- Tow, E.W.; Ersan, M.S.; Kum, S.; Lee, T.; Speth, T.F.; Owen, C.; Bellona, C.; Nadagouda, M.N.; Mikelonis, A.M.; Westerhoff, P.; et al. Managing and Treating Per- and Polyfluoroalkyl Substances (PFAS) in Membrane Concentrates. AWWA Water Sci. 2021, 3, e1233. [Google Scholar] [CrossRef]
- Singh, R.K.; Brown, E.; Mededovic Thagard, S.; Holsen, T.M. Treatment of PFAS-Containing Landfill Leachate Using an Enhanced Contact Plasma Reactor. J. Hazard. Mater. 2021, 408, 124452. [Google Scholar] [CrossRef]
- Vo, P.H.N.; Nguyen, T.T.P.; Nguyen, H.T.M.; Baulch, J.; Dong, S.; Nguyen, C.V.; Thai, P.K.; Nguyen, A.V. PFAS Removal from Landfill Leachate by Ozone Foam Fractionation: System Optimization and Adsorption Quantification. Water Res. 2024, 253, 121300. [Google Scholar] [CrossRef]
- Smith, S.J.; Wiberg, K.; McCleaf, P.; Ahrens, L. Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate. ACS EST Water 2022, 2, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, T.; Zhao, D. Metal-Doped Carbon-Supported/Modified Titanate Nanotubes for Perfluorooctane Sulfonate Degradation in Water: Effects of Preparation Conditions, Mechanisms, and Parameter Optimization. Sci. Total Environ. 2022, 853, 158573. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, T.; Yang, X.; Ding, S.; Ma, M. Insights into Photo/Electrocatalysts for the Degradation of Per- and Polyfluoroalkyl Substances (PFAS) by Advanced Oxidation Processes. Catalysts 2023, 13, 1308. [Google Scholar] [CrossRef]
- Urtiaga, A.; Gómez-Lavín, S.; Soriano, A. Electrochemical Treatment of Municipal Landfill Leachates and Implications for Poly- and Perfluoroalkyl Substances (PFAS) Removal. J. Environ. Chem. Eng. 2022, 10, 107900. [Google Scholar] [CrossRef]
- Annelio, R. Advanced Treatments for PFAS Removal from Landfill Leachate: Evaluating Biological and Ozone Based Chemical Approaches. Ph.D. Thesis, Politecnico di Bari, Bari, Italy, 2025. [Google Scholar]
- Hegedus, M.; Lacina, P.; Plotěný, M.; Lev, J.; Kamenická, B.; Weidlich, T. Fast and Efficient Hydrodehalogenation of Chlorinated Benzenes in Real Wastewaters Using Raney Alloy. J. Water Process Eng. 2020, 38, 101645. [Google Scholar] [CrossRef]
- Lotito, A.M.; Fratino, U.; Bergna, G.; Di Iaconi, C. Integrated Biological and Ozone Treatment of Printing Textile Wastewater. Chem. Eng. J. 2012, 195–196, 261–269. [Google Scholar] [CrossRef]
- Di Iaconi, C.; Del Moro, G.; De Sanctis, M.; Rossetti, S. A Chemically Enhanced Biological Process for Lowering Operative Costs and Solid Residues of Industrial Recalcitrant Wastewater Treatment. Water Res. 2010, 44, 3635–3644. [Google Scholar] [CrossRef]
- Di Iaconi, C.; Rossetti, S.; Lopez, A.; Ried, A. Effective Treatment of Stabilized Municipal Landfill Leachates. Chem. Eng. J. 2011, 168, 1085–1092. [Google Scholar] [CrossRef]
- Di Iaconi, C.; De Sanctis, M.; Rossetti, S.; Mancini, A. Bio-Chemical Treatment of Medium-Age Sanitary Landfill Leachates in a High Synergy System. Process Biochem. 2011, 46, 2322–2329. [Google Scholar] [CrossRef]
- APHA. APHA (2005) Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Gomes, I.d.E. Treatment Train for Mature Urban Landfill Leachate. Ph.D. Thesis, University of Porto, Porto, Portugal, 2020. [Google Scholar]
- Del Moro, G.; Mancini, A.; Mascolo, G.; Di Iaconi, C. Comparison of UV/H2O2 Based AOP as an End Treatment or Integrated with Biological Degradation for Treating Landfill Leachates. Chem. Eng. J. 2013, 218, 133–137. [Google Scholar] [CrossRef]
- Saxena, V.; Padhi, S.K.; Pattanaik, L.; Bhatt, R. Simultaneous Removal of Carbon, Nitrogen, and Phosphorus from Landfill Leachate Using an Aerobic Granular Reactor. Environ. Technol. Innov. 2022, 28, 102657. [Google Scholar] [CrossRef]
- Yong, Z.J.; Bashir, M.J.K.; Ng, C.A.; Sethupathi, S.; Lim, J.-W. A Sequential Treatment of Intermediate Tropical Landfill Leachate Using a Sequencing Batch Reactor (SBR) and Coagulation. J. Environ. Manag. 2018, 205, 244–252. [Google Scholar] [CrossRef]
- Di Iaconi, C.; Del Moro, G.; Bertanza, G.; Canato, M.; Laera, G.; Heimersson, S.; Svanström, M. Upgrading Small Wastewater Treatment Plants with the Sequencing Batch Biofilter Granular Reactor Technology: Techno-Economic and Environmental Assessment. J. Clean. Prod. 2017, 148, 606–615. [Google Scholar] [CrossRef]
- Lin, L.; Chen, S.; Hou, Y.; Lei, L. Study on the Formation Process and Mechanism of Aerobic Granular Sludge in the Sequencing Batch Biofilter Granular Reactor. Environ. Sci. Pollut. Res. 2023, 30, 107661–107672. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, W.; Liang, Y. Uptake of Individual and Mixed Per- and Polyfluoroalkyl Substances (PFAS) by Soybean and Their Effects on Functional Genes Related to Nitrification, Denitrification, and Nitrogen Fixation. Sci. Total Environ. 2022, 838, 156640. [Google Scholar] [CrossRef]
- Alukkal, C.R.; Lee, L.S.; Staton, K. Per- and Polyfluoroalkyl Substances Behavior: Insights from Autothermal Thermophilic Aerobic Digestion—Storage Nitrification-Denitrification Reactors. Chemosphere 2024, 365, 143357. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.K.; Gokhale, S. Treatment of Gaseous Volatile Organic Compounds Using a Rotating Biological Filter. Bioresour. Technol. 2017, 244, 270–280. [Google Scholar] [CrossRef]
- Ren, Y.; Ferraz, F.M.; Yuan, Q. Landfill Leachate Treatment Using Aerobic Granular Sludge. J. Environ. Eng. 2017, 143, 1–7. [Google Scholar] [CrossRef]
- Prendergast, J.; Rodgers, M.; Healy, M.G. The Efficiency of a Sequencing Batch Biofilm Reactor in Organic Carbon and Phosphorus Removal. J. Environ. Sci. Health Part A 2005, 40, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, A.; Papirio, S.; Oliva, A.; Cesaro, A.; Pucci, L.; Capasso, E.M.; Esposito, G.; Pirozzi, F. Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater. Water 2023, 15, 2362. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef]
- Lotito, A.M.; De Sanctis, M.; Rossetti, S.; Lopez, A.; Di Iaconi, C. On-Site Treatment of Textile Yarn Dyeing Effluents Using an Integrated Biological–Chemical Oxidation Process. Int. J. Environ. Sci. Technol. 2014, 11, 623–632. [Google Scholar] [CrossRef]
- Venkatesh, S.; Venkatesh, K.; Quaff, A.R. Dye Decomposition by Combined Ozonation and Anaerobic Treatment: Cost Effective Technology. J. Appl. Res. Technol. 2017, 15, 340–345. [Google Scholar] [CrossRef]
- Chen, W.; Gu, Z.; Wen, P.; Li, Q. Degradation of Refractory Organic Contaminants in Membrane Concentrates from Landfill Leachate by a Combined Coagulation-Ozonation Process. Chemosphere 2019, 217, 411–422. [Google Scholar] [CrossRef]
- de Morais, J.L.; Zamora, P.P. Use of Advanced Oxidation Processes to Improve the Biodegradability of Mature Landfill Leachates. J. Hazard. Mater. 2005, 123, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Maroneze, M.M.; Zepka, L.Q.; Vieira, J.G.; Queiroz, M.I.; Jacob-Lopes, E. A Tecnologia de Remoção de Fósforo: Gerenciamento Do Elemento Em Resíduos Industriais. Rev. Ambient. E Agua 2014, 9, 445–458. [Google Scholar] [CrossRef]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L. Polyfluoroalkyl Compounds in the Aquatic Environment: A Review of Their Occurrence and Fate. J. Environ. Monit. 2011, 13, 20–31. [Google Scholar] [CrossRef]
- Lang, J.R.; Allred, B.M.; Field, J.A.; Levis, J.W.; Barlaz, M.A. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate. Environ. Sci. Technol. 2017, 51, 2197–2205. [Google Scholar] [CrossRef]
- De Sanctis, M.; Murgolo, S.; Altieri, V.G.; De Gennaro, L.; Amodio, M.; Mascolo, G.; Di Iaconi, C. An Innovative Biofilter Technology for Reducing Environmental Spreading of Emerging Pollutants and Odour Emissions during Municipal Sewage Treatment. Sci. Total Environ. 2022, 803, 149966. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Travar, I.; Uwayezu, J.N.; Kumpiene, J.; Yeung, L.W.Y. Challenges in the PFAS Remediation of Soil and Landfill Leachate: A Review. Adv. Environ. Eng. Res. 2020, 2, 6. [Google Scholar] [CrossRef]
- Xin, X.; Kim, J.; Weng, S.; Huang, C.-H. Pilot Assessment of Impacts of Ozone and Ozone/Hydrogen Peroxide Treatment on the Fate of Per- and Polyfluoroalkyl Substances and Precursors. ACS EST Water 2024, 4, 4545–4555. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Lu, H.; Liang, D.; Feng, S.; Li, Y.; Li, J. A Review of the Occurrence, Monitoring, and Removal Technologies for the Remediation of per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate. Chemosphere 2023, 332, 138824. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Period B—BIO Process | Period C—BIO-CHEM Process | ||||
---|---|---|---|---|---|---|---|
Influent | Effluent | Removal (%) | Influent | Effluent | Removal (%) | ||
EC | mS/cm | 28.3 ± 0.4 | 23.4 ± 0.5 | - | 26.5 ± 0.7 | 24.0 ± 0.2 | - |
pH | - | 8.2 ± 0.2 | 8.6 ± 0.1 | - | 8.7 ± 0.1 | 8.5 ± 0.1 | - |
COD * | mg/L | 10,065 ± 136 | 1837 ± 156 | 81.8 ± 0.8 | 8930 ± 256 | 1091 ± 54 | 88 ± 2 |
CODsol * | mg/L | 9800 ± 312 | 1775 ± 114 | - | 8320 ± 198 | 1075 ± 151 | - |
BOD5 | mg/L | 3773 ± 72 | 7 ± 3 | 99.8 ± 0.1 | 3102 ± 105 | 5 ± 3 | 99.8 ± 0.1 |
TSS | mg/L | 306 ± 205 | 194 ± 82 | 41 ± 15 | 125 ± 21 | 18 ± 5 | 85 ± 1 |
VSS | mg/L | 194 ± 131 | 108 ± 59 | 44 ± 11 | 102 ± 16 | 13 ± 2 | 87 ± 4 |
TN | mg/L | 1498 ± 15 | 198 ± 105 | 86 ± 6 | 1305 ± 22 | 399 ± 88 | 70 ± 4 |
NH3 | mgN/L | 1408 ± 19 | 27 ± 50 | 98 ± 4 | 1223 ± 21 | 1.0 ± 0.5 | 99.9 ± 0.1 |
NO2− | mgN/L | 0.2 ± 0.1 | 25 ± 15 | - | 0.3 ± 0.1 | 23 ± 21 | - |
NO3− | mgN/L | 9.9 ± 0.4 | 25 ± 26 | - | 13 ± 4 | 305 ± 86 | - |
TP | mgP/L | 11.1 ± 0.4 | 10 ± 1 | - | 11.1 ± 0.5 | 10.3 ± 0.9 | - |
Rem. col (426 nm) | - | 0.93 ± 0.03 | - | 1 ± 5 | 1.1 ± 0.1 | - | 92 ± 2 |
Rem. col (556 nm) | - | 0.21 ± 0.05 | - | 1 ± 8 | 0.32 ± 0.06 | - | 96.2 ± 0.5 |
Rem. col (660 nm) | - | 0.064 ± 0.003 | - | 0 ± 15 | 0.13 ± 0.02 | - | 95.3 ± 0.4 |
Compounds | Molecular Formula | LOQ (ppt) | Period B—BIO Process | Period C—BIO-CHEM Process | ||
---|---|---|---|---|---|---|
Influent (ng/L) | Effluent (ng/L) | Influent (ng/L) | Effluent (ng/L) | |||
PFBA | C4HF7O2 | 47 | 8363 ± 1805 | 7809 ± 438 | 5189 ± 750 | 8463 ± 602 |
PFPeA | C5HF9O2 | 70 | 1643 ± 112 | 1468 ± 124 | 1340 ± 250 | 2159 ± 118 |
PFHxA | C6HF11O2 | 24 | 3318 ± 244 | 1304 ± 433 | 2809 ± 169 | 4163 ± 126 |
PFHpA | C7HF13O2 | 49 | 1103 ± 185 | <LOQ | 816 ± 90 | 1436 ± 58 |
PFOA | C8HF15O2 | 33 | 10,595 ± 827 | <LOQ | 8626 ±750 | 7049 ± 1600 |
PFNA | C9HF17O2 | 13 | <LOQ | <LOQ | 81 ± 35 | 70 ± 4 |
PFDA | C10HF19O2 | 34 | <LOQ | <LOQ | 149 ± 25 | 76 ± 20 |
PFUdA | C11HF21O2 | 20 | <LOQ | <LOQ | <LOQ | <LOQ |
PFDoDA | C12HF23O2 | 36 | <LOQ | <LOQ | <LOQ | <LOQ |
PFBS | C4HF9O3S | 41 | 67,525 ± 1068 | 54,290 ± 6336 | 44,370 ± 2500 | 56,307 ± 4157 |
PFOS | C8HF17O3S | 29 | 556 ± 226 | <LOQ | 986 ± 80 | 519 ± 18 |
PFHxS | C6HF13O3S | 20 | 207 ± 27 | <LOQ | 217 ± 35 | 298 ± 32 |
6:2 FTSA | C8H5F13O3S | 28 | 1664 ± 81 | <LOQ | 1696 ± 120 | 1067 ± 197 |
Σ PFAS13 | - | - | 94,972 ± 1611 | 64,870 ± 7082 | 66,279 ± 3100 | 81,607 ± 4500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Barkaoui, S.; De Sanctis, M.; Mondal, S.; Murgolo, S.; Pellegrino, M.; Franz, S.; Slavik, E.; Mascolo, G.; Di Iaconi, C. A Comparative Study of Biological and Ozonation Approaches for Conventional and Per- and Polyfluoroalkyl Substances Contaminant Removal from Landfill Leachate. Water 2025, 17, 2501. https://doi.org/10.3390/w17172501
El Barkaoui S, De Sanctis M, Mondal S, Murgolo S, Pellegrino M, Franz S, Slavik E, Mascolo G, Di Iaconi C. A Comparative Study of Biological and Ozonation Approaches for Conventional and Per- and Polyfluoroalkyl Substances Contaminant Removal from Landfill Leachate. Water. 2025; 17(17):2501. https://doi.org/10.3390/w17172501
Chicago/Turabian StyleEl Barkaoui, Sofiane, Marco De Sanctis, Subhoshmita Mondal, Sapia Murgolo, Michele Pellegrino, Silvia Franz, Edoardo Slavik, Giuseppe Mascolo, and Claudio Di Iaconi. 2025. "A Comparative Study of Biological and Ozonation Approaches for Conventional and Per- and Polyfluoroalkyl Substances Contaminant Removal from Landfill Leachate" Water 17, no. 17: 2501. https://doi.org/10.3390/w17172501
APA StyleEl Barkaoui, S., De Sanctis, M., Mondal, S., Murgolo, S., Pellegrino, M., Franz, S., Slavik, E., Mascolo, G., & Di Iaconi, C. (2025). A Comparative Study of Biological and Ozonation Approaches for Conventional and Per- and Polyfluoroalkyl Substances Contaminant Removal from Landfill Leachate. Water, 17(17), 2501. https://doi.org/10.3390/w17172501