Cost-Effectiveness of Vaccines and Public Health

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Vaccines and Public Health".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 753

Special Issue Editor


E-Mail Website
Guest Editor
Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Avenue, Boston, MA 02115, USA
Interests: cost-effectiveness; public health value; vaccines; valuation; vaccination; immunization

Special Issue Information

Dear Colleagues,

This Special Issue, Cost-Effectiveness of Vaccines and Public Health, focuses on cost-effectiveness assessments of vaccines and their use in assessing the public health value of vaccines and vaccination. Authors are encouraged to submit cost-effectiveness studies of novel vaccines or vaccine candidates for neglected, emerging, reemerging, or even major infectious diseases that consider public health impact. Authors are also encouraged to submit reviews of such studies. Analyses based on trial data are accepted. Authors are also encouraged to submit empirical or methodological studies that augment traditional cost-effectiveness analyses of vaccines to assess their full public health value. These studies can include other valuation methods that supplement cost-effectiveness, such as valuing distributional consequences, economic welfare impacts, and impacts on life expectancy. They can also include studies extending cost-effectiveness analyses, such as extended cost-effectiveness, which incorporates equity and distributional considerations. Authors are encouraged to submit studies of novel methods of translating traditional cost-effectiveness analyses to realize greater public health value. These studies can include vaccine investment analyses, health systems impact analyses, assessments of vaccination strategies, and even public health interventions that improve vaccination outcomes.

Dr. Sachin A. Silva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cost-effectiveness
  • public health value
  • vaccines
  • valuation
  • vaccination
  • immunization
  • benefit–cost
  • welfare
  • extended cost-effectiveness
  • QALYs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1911 KB  
Article
Productivity Improvement of Human Papillomavirus-like Particles in Insect Cells Using Hyper-Expression Baculovirus Vector
by Jae-Bang Choi, Ji-Hoon Lee, Eun-Ha Kim, Jae-Deog Kim, Seong-Yeong Kim, Jong-Min Oh, Soo-Dong Woo, Hyunil Kim and Beom-Ku Han
Vaccines 2025, 13(10), 1006; https://doi.org/10.3390/vaccines13101006 - 25 Sep 2025
Abstract
Background/Objectives: Virus-like particle (VLP) vaccines based on human papillomavirus (HPV) L1 proteins have high efficacy for preventing cervical cancer and other HPV-associated diseases. The production yields of commercial HPV VLPs remain suboptimal. We aimed to improve HPV VLP production efficiency using a [...] Read more.
Background/Objectives: Virus-like particle (VLP) vaccines based on human papillomavirus (HPV) L1 proteins have high efficacy for preventing cervical cancer and other HPV-associated diseases. The production yields of commercial HPV VLPs remain suboptimal. We aimed to improve HPV VLP production efficiency using a hyper-expression vector system for the expression of L1 proteins of four major HPV serotypes—HPV 6, 11, 16, and 18. Methods: HPV L1 proteins were expressed in Trichoplusia ni (Hi5) insect cells via a hyper-expression baculovirus vector system. Following cell lysis using a microfluidizer, VLPs were purified through a two-step chromatographic process. Particle morphology was characterized using transmission electron microscopy and dynamic light scattering. Immunogenicity was evaluated using a murine model; mice received three intramuscular injections of the purified quadrivalent VLPs. The resulting IgG and neutralizing antibody responses were compared with those elicited by the commercial quadrivalent vaccine, Gardasil. Results: The L1 proteins from HPV 6, 11, 16, and 18 were successfully expressed at high levels in Hi5 cells, forming uniformly sized VLPs with hydrodynamic diameters of 50–60 nm. The average production yield of the quadrivalent VLPs exceeded 40 mg/L, an improvement over conventional yields. The candidate VLPs elicited strong HPV-specific IgG and neutralizing antibody responses in mice, comparable to those induced by Gardasil. Conclusions: The hyper-expression baculovirus vector system enables high-yield production of HPV L1 VLPs with desirable structural and immunogenic properties. This approach holds promise for the cost-effective and scalable manufacturing of next-generation HPV VLP vaccines, facilitating broader global access to HPV immunization. Full article
(This article belongs to the Special Issue Cost-Effectiveness of Vaccines and Public Health)
Show Figures

Figure 1

Back to TopTop