Research on Heavy Metals in Soils and Sediments

A special issue of Soil Systems (ISSN 2571-8789).

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 26289

Special Issue Editor


E-Mail Website
Guest Editor
Bio Forschung Austria, 1220 Vienna, Austria
Interests: trace elements (heavy metals, platinum metals, rare earths); phosphorus; iodine—occurrence and analysis; environmental mobility and speciation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metal pollution, but also metallic trace element deficiencies, remains a matter of concern. This Special Issue will cover the progress of environmental screening in the field (e.g., by IR, XRF or magnetic measurements), to obtain a rapid overview of polluted sites. These may be due to ore formation, mining, waste mismanagement or atmospheric deposition. Detailed analysis should extend the dataset beyond the legally specified Cd, Pb, Hg and As, to Pt and Pd. Selective and sequential dissolution by batch extraction, migration in column studies, or dissolution rates gives an insight into metal mobilities and soil-to-plant transfer, respectively, to benthic organisms and fish fauna. Dry–wet cycles, recrystallization of pedogenic oxides (Fe, Al and Mn) and interactions with humics to form mineral-associated humic complexes lead to transformations of metal speciation in soils and sediments. Available metal excess and deficiencies affect soil life through interactions with soil enzymes, soil bacteria, detritus feeders and fungal biomass. Finally, remediation studies either aim at metal fixation by the addition of sorbents (e.g., red mud, clay minerals, limestone, phosphate), or phytoextraction by accumulator plants, oilseed crops or afforestation.

Dr. Manfred Sager
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Soil Systems is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2492 KiB  
Article
Distribution and In Vitro Bioaccessibility of Potentially Toxic Metals in Soils at Select Urban Parks at Eastern Canadian Cities
by Matt Dodd, Abdurrazzaq Durojaiye and Julia Dupuis
Soil Syst. 2024, 8(4), 123; https://doi.org/10.3390/soilsystems8040123 - 27 Nov 2024
Viewed by 540
Abstract
This study investigated the human health risks associated with exposure to potentially toxic metals, including arsenic, barium, cadmium, chromium, cobalt, copper, lead, nickel, and zinc, at select parks in Eastern Canadian cities. Except for arsenic in Halifax, the mean metal concentrations in the [...] Read more.
This study investigated the human health risks associated with exposure to potentially toxic metals, including arsenic, barium, cadmium, chromium, cobalt, copper, lead, nickel, and zinc, at select parks in Eastern Canadian cities. Except for arsenic in Halifax, the mean metal concentrations in the cities, including Saint John, Fredericton, Ottawa, Toronto, London, Windsor, Woodstock, Kitchener, Guelph, Chatham, and Montreal, were below the Canadian Council of Ministers of Environment soil quality guideline for parkland use. Metal distribution reflected either the regional natural-occurring concentrations or anthropogenic sources such as industrial activities, historical land use, and heavy traffic corridors. In vitro bioaccessibility values were variable and in the order chromium < nickel < cobalt < arsenic < zinc < copper < lead < cadmium. The risk associated with incidental soil ingestion for children, incorporating bioaccessibility, indicated unacceptable levels of non-carcinogenic effects for 6 out of the 101 samples analyzed. For adults, unacceptable non-carcinogenic effects were noted for only one sample. Lead was the leading contributor to the non-carcinogenic risk. Carcinogenic risk for arsenic was limited to two samples. The overall risks associated with exposure to metals in soils in most of the parks studied were deemed low except for arsenic and lead at a few parks. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

15 pages, 2868 KiB  
Article
Adsorption of Arsenic and Cadmium on Biodegradable and Non-Biodegradable Microplastics in Soil: Comparison Based on Batch Experiment
by Zaw Min Han, Sartaj Ahmad Bhat, Shiamita Kusuma Dewi, Yongfen Wei and Fusheng Li
Soil Syst. 2024, 8(4), 116; https://doi.org/10.3390/soilsystems8040116 - 12 Nov 2024
Viewed by 948
Abstract
In the present study, the adsorption of arsenic(V) and cadmium(II) onto microplastics from poly(butylene succinate-co-butylene adipate) (PBSA) and low-density polyethylene (LDPE) plastic mulch films was investigated through batch experiment. The surface morphology and elemental composition of soil and microplastics were analyzed with scanning [...] Read more.
In the present study, the adsorption of arsenic(V) and cadmium(II) onto microplastics from poly(butylene succinate-co-butylene adipate) (PBSA) and low-density polyethylene (LDPE) plastic mulch films was investigated through batch experiment. The surface morphology and elemental composition of soil and microplastics were analyzed with scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX) and Fourier-transform infrared (FTIR) spectroscopy. The results show that the adsorption of As(V) and Cd(II) on microplastics led to surfaces with coarseness and more cracks, and many small particles. Under the conditions added with 100 pieces of microplastic, PBSA enhanced the adsorption capacity of As(V) (from 0.43 to 0.49 mg/g), and LDPE increased the adsorption of Cd(II) (from 0.174 to 0.176 mg/g) due to the “superimposed effect” caused by hydrogen bonds. Conversely, LDPE reduced the adsorption of As(V) (from 0.44 to 0.40 mg/g) due to a “dilution effect” of PE. Particularly, PBSA exhibited an insignificant effect on the adsorption of Cd(II) in soil during the present study. Overall, our findings provide new insights into the impacts of microplastics on the fate and behavior of heavy metals in the soil system. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

28 pages, 10086 KiB  
Article
Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions
by Chukwudi E. Nwoko, David M. Singer, Allyson C. Tessin, Rachel Izworski and Chloe Heestand
Soil Syst. 2024, 8(4), 113; https://doi.org/10.3390/soilsystems8040113 - 6 Nov 2024
Viewed by 669
Abstract
The historical use of lead (Pb) poses ongoing health risks via exposure to contaminated urban soils. However, there is limited information about heterogeneity in Pb speciation and distribution at the house lot scale. This study determined highly spatially resolved Pb and other metal [...] Read more.
The historical use of lead (Pb) poses ongoing health risks via exposure to contaminated urban soils. However, there is limited information about heterogeneity in Pb speciation and distribution at the house lot scale. This study determined highly spatially resolved Pb and other metal speciation along horizontal transects and vertical soil cores from three homes in the Akron, Ohio (USA) municipal. Solid phase characterization was coupled with a sequential extraction protocol to determine operationally defined speciation (exchangeable (MEX), reducible (MRED), oxidizable (MOX), and residual (MRES)). Lead and Zn were strongly correlated across all fractions (R2 = 0.92). Total extractable Pb and Zn were found in low weight percent concentrations nearest to the homes, and speciation was dominated by MEX and MRED. High Pb in the MEX fraction was correlated with the presence of Pb-bearing paint chips in the soil. Lead in the MEX fraction in soils near the homes decreased with increasing time due to exterior renovations coupled with increases in Pb and Zn in the MRED fraction. These results suggest that homes are the dominant source of Pb and Zn due to the weathering of exterior surfaces and highlight the acute risk of exposure to more labile Pb immediately following exterior renovations and damage to home exteriors in areas of older housing stock. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

9 pages, 1802 KiB  
Communication
The Past Is Never Dead: Soil Pollution from Mining in the Copiapó River Basin (Northern Chile)
by Luna Araceli Pérez, Tatiana Izquierdo, Manuel Abad, Manuel Caraballo, Sebastián Ureta and Francisco Ruiz
Soil Syst. 2024, 8(4), 106; https://doi.org/10.3390/soilsystems8040106 - 11 Oct 2024
Viewed by 800
Abstract
This short paper analyses the concentrations of two major components (Fe, S) and eight trace elements (As, Au, Co, Cu, Hg, Ni, Mn, Zn) in soils and tailings from Tierra Amarilla (northern Chile) using ICP-Ms analysis. The levels of As, Au, Cu, Fe [...] Read more.
This short paper analyses the concentrations of two major components (Fe, S) and eight trace elements (As, Au, Co, Cu, Hg, Ni, Mn, Zn) in soils and tailings from Tierra Amarilla (northern Chile) using ICP-Ms analysis. The levels of As, Au, Cu, Fe and S are very high and come from polymetallic sulphides from nearby mines, together with minor contributions of Co, Ni and Mn. Hg has its origin in the extreme seasonal flows of the Copiapó River, which erodes the dumps of old precious metal mines. These high concentrations require further analysis of possible metal immobilisation techniques, bioavailability or analysis in cultivated plants. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
Use of Cannabis sativa L. for Improving Cadmium-Contaminated Mediterranean Soils—Effect of Mycorrhizal Colonization on Phytoremediation Capacity
by Maria Androudi, Vasiliki Liava, Eleni Tsaliki, Ioannis Ipsilantis and Evangelia E. Golia
Soil Syst. 2024, 8(3), 100; https://doi.org/10.3390/soilsystems8030100 - 16 Sep 2024
Cited by 1 | Viewed by 1557
Abstract
Although the phytoremediation strategy has been studied worldwide, little research data are available regarding the influence of mycorrhizae on the phytoremediation capacity of various plants grown in Cd-contaminated soils in Mediterranean environments. Therefore, a pot experiment was carried out to study the possible [...] Read more.
Although the phytoremediation strategy has been studied worldwide, little research data are available regarding the influence of mycorrhizae on the phytoremediation capacity of various plants grown in Cd-contaminated soils in Mediterranean environments. Therefore, a pot experiment was carried out to study the possible effectiveness of hemp plant (Cannabis sativa L.) in the remediation of moderately and heavily Cd-contaminated soils and additionally to quantify the effect of Cd on Arbuscular Mycorrhizal Fungi (AMFs). For this purpose, an alkaline clay soil collected from the Farm of Institute of Plant Breeding and Genetic Resources (North Greece) was contaminated with two levels of Cd (3 and 30 mg Cd kg−1, corresponding to Levels A and B, respectively—first factor) at two incubation times (10 and 30 days—second factor) and six treatments (Control_30d, Control_10d, CdA_30d, CdB_30d, CdA_10d, CdB_10d) were created. Soil Cd concentrations, both pseudo-total and available to plants, were determined after extraction with Aqua Regia mixture and DTPA solution, respectively, before and after the cultivation of hemp plants and after the harvesting. Cd concentrations in the aboveground and underground plant parts were also estimated after digestion with Aqua Regia, while root colonization by AMFs was determined with a microscope. The highest plant’s Cd concentration, more than 50%, was observed in its underground part, at all Cd-contaminated treatments, indicating a strong capacity for cadmium to gather up in the roots. Among different Cd levels and incubation days, significant differences were recorded in the rates of root colonization by AMFs. Among different Cd levels and incubation days, 3 mg Cd Kg−1 soil promoted AMF root colonization, particularly at 10-day incubation, while 30 mg Cd Kg−1 soil diminished it. Colonization was lower with longer incubation times at both levels of Cd. Hemp appears to be a viable option for phytostabilization in Cd-contaminated soils, enabling further utilization of AMFs to assist the phytoremediation process. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

21 pages, 3376 KiB  
Article
Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination
by Tatiana Minnikova, Sergey Kolesnikov, Anna Kuzina, Dmitry Trufanov, Ekaterina Khrapay and Anatoly Trushkov
Soil Syst. 2024, 8(3), 76; https://doi.org/10.3390/soilsystems8030076 - 5 Jul 2024
Cited by 1 | Viewed by 953
Abstract
Lead (Pb) is one of the most common environmental pollutants. Lead has an acute toxic effect on soil biotas and the enzymatic system of soils. The objective of this study is to carry out enzymatic diagnostics of soil health in the European part [...] Read more.
Lead (Pb) is one of the most common environmental pollutants. Lead has an acute toxic effect on soil biotas and the enzymatic system of soils. The objective of this study is to carry out enzymatic diagnostics of soil health in the European part of Russia after Pb contamination. As a part of the simulation experiment, Pb (at maximum permissible concentrations (MPCs) of 1, 10, and 100) was used to contaminate 12 types of soils in the south and center of the European part of Russia, which differed in their physical and chemical properties. To assess soil health, the activity of oxidoreductases (catalase, dehydrogenases, and cysteine reductase) and hydrolases (invertase, urease, and phosphatase) was studied. Most enzymes were inhibited with increased Pb dosage. The most sensitive soils to Pb contamination, assessed by enzyme activity, are soils of semi-deserts and dry steppes. Cysteine reductase is considered the most sensitive enzyme to Pb contamination. The most informative indicators for Pb contamination were phosphatase, cysteine reductase, and invertase. The P (phosphatase) cycle and the redox enzyme (catalase) also have instability in Pb-contaminated soils. The C (invertase and dehydrogenases) and N (urease) cycles do not change significantly when contaminated with lead. The results of this study can be used for the diagnostics of the condition of soils in different natural areas after Pb contamination. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

11 pages, 1977 KiB  
Article
Verification of the Solid–Liquid Separation of Waterlogged Reduced Soil via a Centrifugal Filtration Method
by Shatabdi Saha, Kumi Watanabe, Tomoyuki Makino, Hitoshi Kanno, Kazuhiko Kimura and Shin-Ichi Yamasaki
Soil Syst. 2024, 8(2), 61; https://doi.org/10.3390/soilsystems8020061 - 30 May 2024
Viewed by 1179
Abstract
The efficient separation of solid and liquid phases of soil under reductive conditions is of the utmost importance to study soil chemistry and to predict the mobility and bioavailability of nutrients and toxic contaminants in waterlogged reduced soils (WRSs). However, there is no [...] Read more.
The efficient separation of solid and liquid phases of soil under reductive conditions is of the utmost importance to study soil chemistry and to predict the mobility and bioavailability of nutrients and toxic contaminants in waterlogged reduced soils (WRSs). However, there is no established method for efficiently separating the solid and liquid phases of WRS within a short time while maintaining its reductive conditions. This study aimed to verify the applicability of a simple centrifugal filtration method (CFM) for the efficient separation of solid and liquid phases of a WRS and examine the CFM-extracted soil solution to confirm that the reductive condition was maintained during the solid–liquid separation process. Incubation experiments were performed under reductive conditions with or without ethanol/molasses used as additional organic material (OM), while the soil solution was collected by both a suction method and CFM at different centrifugation speeds (700, 2760, and 11,000 rpm) and times (1–7 min). The results showed that the soil pH increased with time while the Eh decreased, indicating that its reducing state was enhanced during the incubation experiments. The addition of OM promoted the reductive conditions in the first days of the experiments. Centrifugation speed, rather than time, was found to be the key to extract the maximum amount of soil solution, while a higher centrifugation speed (11,000 rpm), which represents the permanent wilting point, was found to be most effective for extracting the maximum amount of soil solution. The results exhibited no significant difference in solute (As, Fe(II), and Mn) concentrations when varying amounts of CFM-extracted soil solution were measured. The statistical analysis also indicated no significant (p > 0.05) difference between the solute concentrations in the CFM-extracted soil solution and the solute concentrations in the soil solution extracted by the suction method, confirming that the reductive condition was maintained during solid–liquid separation by CFM. This study suggests that CFM operating at a higher centrifugation speed could potentially be employed as a simple and highly effective technique to efficiently separate the solid and liquid phases of WRS (sandy clay loam) within a short time while maintaining its reductive conditions. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

12 pages, 1338 KiB  
Article
Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils
by Enilson de Barros Silva, Múcio Mágno de Melo Farnezi, Lauana Lopes dos Santos, Alexandre Chistofaro Silva, Paulo Henrique Grazziotti, Luís Reynaldo Ferracciú Alleoni, Ingrid Horák-Terra, Sandra Antunes do Nascimento and Bento Gil Uane
Soil Syst. 2024, 8(1), 17; https://doi.org/10.3390/soilsystems8010017 - 26 Jan 2024
Viewed by 1793
Abstract
Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of [...] Read more.
Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of Ni on the growth and phytolith yield of grasses in two artificially contaminated soils. Two experiments separated by soil types (Typic Quartzipsamment and Rhodic Hapludox) were conducted in a completely randomized design in a 2 × 4 factorial scheme with three replications. The factors were two species of grass (Urochloa decumbens and Megathyrsus maximus) and three concentrations of Ni (20, 40, and 120 mg kg−1) and control treatment. The grasses were influenced by the increase in Ni rates in the soils. Ni exerted a micronutrient function with the addition of 30 mg kg−1 of Ni in soils, but this concentration caused toxicity in grasses. Such a level is lower than the limits imposed by the Brazilian environmental legislation. Higher Ni availability in Typic Quartzipsamment promoted Ni toxicity, with reduced growth and increased phytolith yield in the shoot, increased Ni in the shoot, and Ni occlusion in phytoliths by grasses, in comparison with Rhodic Hapludox. The yield and Ni capture in phytoliths by grasses in Ni-contaminated soils are related to the genetic and physiological differences between grasses and Ni availability in soils. Ni capture by phytoliths indicates that it may be one of the detoxification mechanisms of Urochloa decumbens to Ni contamination, providing additional tolerance. Megathyrsus maximus may be a future grass for the phytoremediation technique in Ni-contaminated soils. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

18 pages, 7664 KiB  
Article
Complex Speciation and Distribution of Iron, Sulfur, and Trace Metals in Coal Mine Soils Reflect Grain- and Sub-Grain-Scale Heterogeneity during Pyrite Oxidative Dissolution
by Md Abu Raihan Chowdhury and David M. Singer
Soil Syst. 2024, 8(1), 2; https://doi.org/10.3390/soilsystems8010002 - 22 Dec 2023
Cited by 1 | Viewed by 2046
Abstract
Historical coal mining practices have caused various soil and water hazards, particularly through the dumping of mine waste. The primary environmental risk associated with this waste is the leaching of toxic metals from dumps of spoil or refuse into the subsurface soil or [...] Read more.
Historical coal mining practices have caused various soil and water hazards, particularly through the dumping of mine waste. The primary environmental risk associated with this waste is the leaching of toxic metals from dumps of spoil or refuse into the subsurface soil or into nearby water resources. The extent of metal release is controlled via the oxidative dissolution of pyrite and potential re-sequestration through secondary Fe oxides. The characterization of the dominant Fe-bearing phase and the distribution of trace metals associated with these phases was determined via electron microscopy, synchrotron-based X-ray micro-fluorescence (μ-XRF) element and redox mapping from shallow mine soils from an impacted watershed in Appalachian Ohio. The dominant Fe-bearing phases were: (1) unweathered to partially weathered pyrite; (2) pseudomorphic replacement of pyrite with Fe(III) oxides; (3) fine-grained Fe oxide surface coatings; and (4) discrete Fe(III) oxide grains. Thicker secondary coatings and larger particles were sulfate rich, whereas smaller grains and thinner coatings were sulfate poor. The discrete Fe oxide grains exhibited the highest concentrations of Cr, Mn, Ni, and Cu, and sub-grain-scale concentration trends (Mn > Cr > Ni > Cu) were consistent with bulk soil properties. Predicting future metal transport requires an understanding of metal speciation and distribution from the sub-grain scale to the pedon scale. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

14 pages, 716 KiB  
Article
Temporal Changes in Cd Sorption and Plant Bioavailability in Compost-Amended Soils
by Shamim Al Mamun, Niklas J. Lehto, Jo Cavanagh, Richard McDowell, Liv Kellermann and Brett H. Robinson
Soil Syst. 2023, 7(4), 107; https://doi.org/10.3390/soilsystems7040107 - 29 Nov 2023
Viewed by 1941
Abstract
The application of Cd-contaminated phosphate fertiliser has enriched concentrations of this non-essential element in many agricultural soils. Consequently, concentrations of the metal in some agricultural products exceed the Maximum Limit in foods. Composts can reduce the transfer of Cd from soil to plants; [...] Read more.
The application of Cd-contaminated phosphate fertiliser has enriched concentrations of this non-essential element in many agricultural soils. Consequently, concentrations of the metal in some agricultural products exceed the Maximum Limit in foods. Composts can reduce the transfer of Cd from soil to plants; however, it is unclear how long this beneficial effect endures. We aimed to determine temporal changes of phytoavailable Cd in two market garden soils (an Allophanic Orthic Granular Soil and a Recent Silt Loam). Soils were amended with either municipal green waste compost or sawdust and animal waste compost at a rate of 2.5% w/w under three incubation regimes: at 19 °C, at 30 °C, and at 30 °C with additional N added as urea at 0.6 g urea/kg soil added over 1 year. Each replicate was sampled after 1, 5, 9, 13, 21, 31, and 49 weeks, and phytoavailable Cd was estimated through 0.05 M Ca(NO3)2 extraction. Seed potato (Solanum tuberosum), ‘Nadine’ variety, was grown in the Pukekohe Allophanic Orthic Granular Soil, freshly amended with municipal compost and the same soil aged for one year. The concentration of Cd in all samples was analysed using an ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometer). The C concentration in the soil—compost mixtures decreased over the year, with the greatest decreases occurring in the soils incubated at 30 °C with added N. Unexpectedly, the concentration of Ca(NO3)2-extractable Cd in the compost-amended soils did not increase over time and in some cases even decreased. This was confirmed through a pot experiment, which showed the Cd concentration in potato was reduced by 50% in both the freshly amended soil and the amended soil aged for one year. Cadmium immobilisation in soils might be due to both the sorption of Cd by organic matter and the occlusion of sorbed Cd by oxy-hydroxides of iron and aluminium. Over 49 weeks, soluble Cd does not increase as organic matter oxidises. The application of municipal compost to soil will reduce both plant Cd solubility and plant Cd uptake for at least one year in the soils tested. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

14 pages, 2738 KiB  
Article
Heavy Metals in Wetland Ecosystem: Investigating Metal Contamination in Waterbirds via Primary Feathers and Its Effect on Population and Diversity
by Jeganathan Pandiyan, Radjassegarin Arumugam, Khalid A. Al-Ghanim, Nadezhda Sachivkina, Marcello Nicoletti and Marimuthu Govindarajan
Soil Syst. 2023, 7(4), 104; https://doi.org/10.3390/soilsystems7040104 - 16 Nov 2023
Cited by 4 | Viewed by 2637
Abstract
Wetlands are dynamic ecosystems that provide feeding and nesting grounds for diverse species of waterbirds. The quality of wetland habitat may have an impact on the density, diversity, and species richness of waterbirds. Toxic metal contamination is one of the most significant threats [...] Read more.
Wetlands are dynamic ecosystems that provide feeding and nesting grounds for diverse species of waterbirds. The quality of wetland habitat may have an impact on the density, diversity, and species richness of waterbirds. Toxic metal contamination is one of the most significant threats to wetland habitats. Feathers are a key indicator of heavy metal contamination in avian communities as a non-invasive method. We examined the levels of Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni), and Zinc (Zn) using ICP-AAS and standards of digestion procedure from the primary feathers of 10 distinct species of waterbirds. The study was conducted at four wetlands, viz., Point Calimere Wildlife Sanctuary (Ramsar site); Pallikaranai Marshland (Ramsar site); Perunthottam freshwater lake (unprotected wetland), Tamil Nadu and the Pulicat Lake, Andhra Pradesh, (Ramsar site), India. The Large crested tern had higher concentrations of As, Co, Cr, and Ni. Cu was greater in the Indian pond heron, and Zn was higher in the Grey heron. The accumulation of metals differed among the waterbirds (p < 0.05), and the inter-correlation of metals found positive influences between the tested metals, i.e., Co was positively associated with As, Cr had a positive correlation with As and Co, and Ni was positively correlated with As, Co, Cr, and Cu. In contrast, Pb had a positive association with Cu and Ni. The Zn was associated with Co, Cr and Cu. The level of metals in waterbirds was Zn > Cu > Cr > Ni > Pb > Co > Cd > As. The results showed that metal levels in the primary feathers of waterbirds were greater than the other species of waterbirds examined across the world. Thus, the study emphasizes that managing wetlands and controlling pollution is crucial to saving waterbirds; otherwise, the population and diversity of waterbirds will decline and become a significant threat to waterbird communities. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

9 pages, 1172 KiB  
Communication
Sediments as Sentinels of Pollution Episodes in the Middle Estuary of the Tinto River (SW Spain)
by Luis Miguel Cáceres, Francisco Ruiz, Javier Bermejo, Lucía Fernández, María Luz González-Regalado, Joaquín Rodríguez Vidal, Manuel Abad, Tatiana Izquierdo, Antonio Toscano, Paula Gómez and Verónica Romero
Soil Syst. 2023, 7(4), 95; https://doi.org/10.3390/soilsystems7040095 - 24 Oct 2023
Cited by 1 | Viewed by 1753
Abstract
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted [...] Read more.
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted from the middle estuary of the Tinto River (SW Spain). The results are based on facies interpretation, ICP atomic emission spectrometry analysis, the application of a regional background to obtain the geoaccumulation index and dating. The main objective of this communication is the detection of natural or anthropogenic pollution episodes in the middle estuary of the Tinto River (SW Spain). Four pollution episodes have been detected: (1) ~5.8 cal. kyr BP, probably caused by natural acid rock drainage processes derived from the oxidation of the Iberian Pyritic Belt deposits found in its drainage basin; (2) 4.7–4.5 kyr BP, coming from the first mining activities and characterized by a significant increase in the concentrations of the five elements analyzed; (3) 1850–1960 interval, coinciding with intensive mining and characterized by increasing values of As and, to a lesser extent, Pb (intensive mining); and (4) the second half of the 20th century, with high element concentrations from mining and industrial effluents. All episodes show an increase in their geochemical classes deduced from the geoaccumulation index. This communication can serve as an example for assessing the impact of different types of pollution in estuarine environments. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 3273 KiB  
Review
Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review
by Yelizaveta Chernysh, Viktoriia Chubur, Iryna Ablieieva, Polina Skvortsova, Olena Yakhnenko, Maksym Skydanenko, Leonid Plyatsuk and Hynek Roubík
Soil Syst. 2024, 8(2), 36; https://doi.org/10.3390/soilsystems8020036 - 22 Mar 2024
Cited by 4 | Viewed by 3214
Abstract
The migration of heavy metals and radionuclides is interrelated, and this study focusses on the interaction and complex influence of various toxicants. The rehabilitation of radioactively contaminated territories has a complex character and is based on scientifically supported measures to restore industrial, economic, [...] Read more.
The migration of heavy metals and radionuclides is interrelated, and this study focusses on the interaction and complex influence of various toxicants. The rehabilitation of radioactively contaminated territories has a complex character and is based on scientifically supported measures to restore industrial, economic, and sociopsychological relations. We aim for the achievement of pre-emergency levels of hygienic norms of radioactive contamination of output products. This, in its sum, allows for further economic activity in these territories without restrictions on the basis of natural actions of autoremediation. Biosorption technologies based on bacterial biomass remain a promising direction for the remediation of soils contaminated with radionuclides and heavy metals that help immobilise and consolidate contaminants. A comprehensive understanding of the biosorption capacity of various preparations allows for the selection of more effective techniques for the elimination of contaminants, as well as the overcoming of differences between laboratory results and industrial use. Observation and monitoring make it possible to evaluate the migration process of heavy metals and radionuclides and identify regions with a disturbed balance of harmful substances. The promising direction of the soil application of phosphogypsum, a by-product of the chemical industry, in bioremediation processes is considered. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

34 pages, 1048 KiB  
Review
Soil Phytomining: Recent Developments—A Review
by Christos Kikis, Georgios Thalassinos and Vasileios Antoniadis
Soil Syst. 2024, 8(1), 8; https://doi.org/10.3390/soilsystems8010008 - 8 Jan 2024
Cited by 5 | Viewed by 4480
Abstract
Phytomining (PM) is defined as the process of using plants capable of bio-extracting metals from soil in order to explore them economically. This relatively new, innovative method has been gathering significant attention in both the academic and commercial domains. Conventional mining methods are [...] Read more.
Phytomining (PM) is defined as the process of using plants capable of bio-extracting metals from soil in order to explore them economically. This relatively new, innovative method has been gathering significant attention in both the academic and commercial domains. Conventional mining methods are often economically unviable when applied to lean ores, and they can lead to secondary pollution in soil—a situation that applies to all excavated metals. On the other hand, PM is an environmentally friendly and economically viable solution that addresses the growing demands for metal resources, while simultaneously contributing to energy production by harnessing biomass energy. This comprehensive review presents the current PM techniques, challenges, and the hyperaccumulator plant species that may be used for the extraction of the main targeted elements in the process. Typically, the targeted metals are those of economic value, which can later be deposited or sold to various industries. This review also analyzes the factors influencing the economic viability of PM and proposes potential enhancements. Undeniably, PM offers the opportunity for economically sustainable exploration of metal-rich soils, but its full commercial viability remains constrained under current conditions as scientists are actively searching for the identification and utilization of new hyperaccumulator plant species in different locations worldwide, while creating new relationships and business avenues within the mining industry. Overall, this review highlights the current status of PM technology and the plants used, emphasizing the need for further research to enhance its commercial implementation and its potential to assist the mining industry. We conclude that PM, although a relatively new and unexplored concept, may provide economic and environmental benefits to soil end-users and managers who must cultivate on metal-contaminated soils as PM may turn yield shortages (of specific commercial crops) to benefits if high-yield hyperaccumulators are cultivated for industrial valorization of their high metal-content biomass. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

Back to TopTop