Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil and Experimental Design
2.2. Measurements and Analytical Determinations
2.3. Statistics
3. Results
3.1. Soil Characteristics
3.2. Nickel Effects on Shoot and Phytolith Yield in Grasses
3.3. Nickel in Shoots and Phytoliths
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, E.B.; Souza, F.V.P.; Grazziotti, P.H.; Alleoni, L.R.F.; Nardis, B.O.; Ferreira, E.A. Growth of tropical grasses in Oxisol contaminated by nickel. Chil. J. Agric. Res. 2017, 77, 273–280. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Carmona, F.F.; Bhargava, M.; Srivastava, S. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag. 2012, 105, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Horn, H.M.; Sampaio, R.A.; Horn, A.H.; Oliveira, E.S.A.; Lepsch, I.F.; Bilal, E. Use of Si-Phytoliths in depollution of mining areas in the Cerrado-Caatinga region, MG, Brazil. Int. J. Geomate 2016, 11, 2216–2221. [Google Scholar]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Buján, E. Elemental composition of phytoliths in modern plants (Ericaceae). Quat. Int. 2013, 287, 114–120. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.; Cornelis, J.T. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Front. Plant Sci. 2014, 5, 529. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Song, Z.; Liu, H.; Müeller, K.; Yang, X.; Zhang, X.; Li, Z.; Liu, X.; Qiu, S.; Hao, Q.; et al. Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolian steppe of China. Geoderma 2017, 308, 86–92. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; Liu, H.; Van Zwieten, L.; Song, A.; Li, Z.; Hao, Q.; Zhang, X.; Wang, H. Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Geoderma 2018, 312, 36–44. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Santos, P.M.; Mendonça, F.M.; Araujo, L.C.; Cruz, P.G. Dry matter production of Tanzania grass as a function of agrometeorological variables. Pesqui. Agropecuária Bras. 2012, 47, 471–477. [Google Scholar] [CrossRef]
- Pivello, V.R.; Shida, C.N.; Meirelles, S.T. Alien grasses in Brazilian savannas: A threat to the biodiversity. Biodivers. Conserv. 1999, 8, 1281–1294. [Google Scholar] [CrossRef]
- Conama. National Environmental Council of Brazil. Resolução no 420/2009. It Provides Criteria and Guiding Values of Soil Quality for the Presence of Chemical Substances and Establishes Guidelines for the Environmental Management of Areas Contaminated by These Substances as a Result of Anthropic Activities; Ministry of the Environment: Belo Horizonte, Brazil, 2009.
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation-a critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.B.; Alves, I.S.; Alleoni, L.R.F.; Grazziotti, P.H.; Farnezi, M.M.M.; Santos, L.L.; Prochnow, J.T.; Fontan, I.C.I. Availability and toxic level of cadmium, lead and nickel in contaminated soils. Commun. Soil Sci. Plant Anal. 2020, 51, 1341–1356. [Google Scholar] [CrossRef]
- Parr, J.F.; Sullivan, L.A. Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 2011, 342, 165–171. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: Keys to Soil Taxonomy, 11th ed.; Department of Agriculture, Natural Resources and Conservation Services: Washington, DC, USA, 2010.
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual for Methods of Soil Analysis, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- USEPA. United States Environmental Protection Agency. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils-Method 3052-SW-846; EPA: Washington, DC, USA, 2007.
- Santos, S.R.; Silva, E.B.; Alleoni, L.R.F.; Grazziotti, P.H. Citric acid influence on soil phosphorus availability. J. Plant Nutr. 2017, 40, 2138–2145. [Google Scholar] [CrossRef]
- Parr, J.F.; Lentfer, C.J.; Boyd, W.E. A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J. Archaeol. Sci. 2001, 28, 875–886. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
Attribute | Unit | Soil | |
---|---|---|---|
Typic Quartzipsamment (TQ) | Rhodic Hapludox (RH) | ||
pH (a) water | - | 5.1 | 5.2 |
P (b) | mg kg−1 | 0.2 | 0.2 |
K (b) | mmolc kg−1 | 0.4 | 0.2 |
Ca (c) | mmolc kg−1 | 6.7 | 4.5 |
Mg (c) | mmolc kg−1 | 3.5 | 1.8 |
Al (c) | mmolc kg−1 | 7.8 | 4.2 |
Cation-exchange capacity (CEC) | mmolc kg−1 | 40.6 | 71.5 |
Base saturation | % | 26.0 | 9.0 |
Organic carbon (d) | g kg−1 | 3.5 | 5.8 |
Ni (e) | mg kg−1 | <0.1 | <0.1 |
Maximum P adsorption capacity | mg kg−1 | 100 | 250 |
Fe2O3 (f) | g kg−1 | 7 | 298 |
Al2O3 (f) | g kg−1 | 33 | 166 |
Clay (g) | g kg−1 | 60 | 510 |
Grasses | Typic Qurtzipsmment (TQ) | Rhodic Hpludox (RH) | ||||
---|---|---|---|---|---|---|
Control | MC | MCA | Control | MC | MCA | |
Urochlo decumens | 9.7 | 12.6 | 8.5 | 13.7 | 15.7 | 13.4 |
Megthyrsus mximus | 8.3 | 16.8 | 11.3 | 16.0 | 19.5 | 16.5 |
Average | 9.0 | 14.7 | 9.9 | 14.9 | 17.6 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.d.B.; Farnezi, M.M.d.M.; Santos, L.L.d.; Silva, A.C.; Grazziotti, P.H.; Alleoni, L.R.F.; Horák-Terra, I.; Nascimento, S.A.d.; Uane, B.G. Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils. Soil Syst. 2024, 8, 17. https://doi.org/10.3390/soilsystems8010017
Silva EdB, Farnezi MMdM, Santos LLd, Silva AC, Grazziotti PH, Alleoni LRF, Horák-Terra I, Nascimento SAd, Uane BG. Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils. Soil Systems. 2024; 8(1):17. https://doi.org/10.3390/soilsystems8010017
Chicago/Turabian StyleSilva, Enilson de Barros, Múcio Mágno de Melo Farnezi, Lauana Lopes dos Santos, Alexandre Chistofaro Silva, Paulo Henrique Grazziotti, Luís Reynaldo Ferracciú Alleoni, Ingrid Horák-Terra, Sandra Antunes do Nascimento, and Bento Gil Uane. 2024. "Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils" Soil Systems 8, no. 1: 17. https://doi.org/10.3390/soilsystems8010017
APA StyleSilva, E. d. B., Farnezi, M. M. d. M., Santos, L. L. d., Silva, A. C., Grazziotti, P. H., Alleoni, L. R. F., Horák-Terra, I., Nascimento, S. A. d., & Uane, B. G. (2024). Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils. Soil Systems, 8(1), 17. https://doi.org/10.3390/soilsystems8010017