Soil Phytomining: Recent Developments—A Review
Abstract
:1. Introduction
2. Elements Involved in Phytomining
2.1. Phytomining Elements
2.1.1. Nickel
Plant Species | Family | Ni Concentration (mg kg−1)/Biomass Yield (t ha−1) | Experimental Conditions—Country | Reference |
---|---|---|---|---|
Alyssum baldaccii | Brassicaceae | 1430–17,670 | Ex situ; plant analysis; serpentine soils; Mediterranean climate; Mt. Smolikas, Greece | Bani et al. [29] |
Alyssum bertolonii | Brassicaceae | 4653–13,102/7–9 | Hydroponics experiment; contained 400 mL Hoagland solution; plants spiked with NiSO4; Italy | Galardi et al. [30] |
Alyssum bertolonii | Brassicaceae | 800/9 | 2-year field experiment; applied various amounts of NPK fertilizer; Mediterranean climate; Murlo, Italy | Robinson et al. [24] |
Alyssum chalcidicum | Brassicaceae | 1700 | Ex situ; plant analysis; ultramafic rocks and hot springs; pseudo-total Ni concentration 1560 mg kg−1 soil; Mediterranean climate; Euboea Island, Greece | Kanellopoulos and Argyraki [31] |
Alyssum euboeum | Brassicaceae | 26–4550 | Ex situ; plant analysis; serpentine soils; Mediterranean climate; Turkey | Bani et al. [29] |
Alyssum heldreichii | Brassicaceae | 11,800 | Ex situ; plant analysis; serpentine soils; pseud-total Ni concentrations 1160 mg kg−1 soil; Mediterranean climate; Katara pass, Greece | Bani et al. [29] |
Alyssum lesbiacum | Brassicaceae | 2900–22,400/4.2–10 | Hydroponics experiment; applied nutrient solution; solution spiked with 0–250 μmol L−1 NiSO4; Greece | Adamidis et al. [32] |
Alyssum markgrafii | Brassicaceae | <3–19,100 | Ex situ; plant analysis; serpentine soils; pseudo-total Ni concentration in soil 1670 mg kg−1; Mediterranean climate; Gjegjan; Albania | Bani et al. [29] |
Alyssum murale | Brassicaceae | 7–34,690/10.2–20 | 5-year field experiment; pseudo-total Ni concentration in soil 3180 mg kg−1; fertilized with 100 kg ha−1 N; Mediterranean climate; Pojska, Albania | Bani et al. [29] |
Berkeya coddii | Asteraceae | 40–5800 | Pot experiment in glasshouses; plants spiked with 4−1000 mg Ni kg−1 potting mix; New Zealand | Keeling et al. [33] |
Brackenridgea palustris | Melastomataceae | 1440/6.74 | Ex situ; plant analysis; ultramafic rocks; pseudo- total Ni concentration—7051–10,521 mg kg−1; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Cloezia artensis | Myrtaceae | 35–1729 | Field experiment; extractable Ni concentrations in soil—35–208 mg kg−1; Semi-Tropical climate; New Caledonia | Becquer et al. [35] |
Codia spatulata | Cunoniaceae | 27–1420/6.5 | Field experiment around mine sites; Semi-Tropical climate; New Caledonia | Jaffré et al. [36] |
Dichapetalum gelonioides | Dichapetalaceae | 3160 | Ex situ; plant analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1 soil; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Geissois Pruinosa | Cunoniaceae | 3000–15,106/38.5 | Field experiment around mine sites; Semi-tropical climate; New Caledonia | Jaffré et al. [36] |
Knema matanensis | Myristicaceae | 2500–5000 | Ex situ; plant analysis; ultramafic rocks; pseudo total Ni concentrations—7051–10,251 mg kg−1 soil; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Miscanthus floridulus | Poaceae | 667–778 | Ex situ; plant analysis; uranium tailings with background Ni concentration 11.5 mg kg−1 soil; Tropical climate; South China | Li et al. [37] |
Myristica laurifolia | Myristicaceae | 1100 | Ex situ; plant analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Peripterygia marginata | Araliaceae | 23–1800 | Field experiment around mine sites; Semi-Tropical climate; New Caledonia | Jaffré et al. [36] |
Phyllanthus discolor | Phyllanthaceae | 13,670–31,490 | Ex situ; plant analysis; ultramafic rocks; Tropical climate; Cuba | Berazain et al. [38] |
Phyllanthus orbicularis | Phyllanthaceae | 4140–10,950 | Ex situ; plant analysis; ultramafic rocks; Tropical climate; Cuba | Berazain et al. [38] |
Phyllanthus xpallidus | Phyllanthaceae | 15,390–60,170 | Ex situ; plant analysis; ultramafic rocks; Tropical climate; Cuba | Berazain et al. [38] |
Phyllantus insulae | Phyllanthaceae | 34,330–38,720 | Ex situ analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Planchonella oxyhedra | Sapotaceae | 19,600/10 | Ex situ; plant analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1 soil; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Planchonella oxyhedra | Sapotaceae | 24,100–27,500/30–40 | Ex situ; plant analysis; ultramafic rocks; Tropical climate; Halmahera Island, Indonesia | Hamdan et al. [39] |
Rinorea bengalensis | Violaceae | 20,000–25,100/30–40 | Ex situ; plant analysis sampling; ultramafic rocks; Tropical climate; Halmahera Island, Indonesia | Hamdan et al. [39] |
Sarcotheca celebica | Oxalidaceae | 700–1000 | Ex situ; plant analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1 soil; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
Streptanthus polygaloides | Brassicaceae | 4000/21.4 | Ex situ; plant analysis; serpentine soil; California, USA | Davis and Boyd [40] |
Thlaspi apterum | Brassicaceae | 16,600–21,500 | Ex situ; plant analysis; serpentine soils; pseudo-total Ni concentrations 2858 mg kg−1 soil; Mediterranean climate; Fotinovo, Bulgaria | Bani et al. [29] |
Thlaspi ochroleucum | Brassicaceae | 3400 | Ex situ; plant analysis; serpentine soils; pseudo-total Ni concentrations 2770 mg kg−1 soil; Mediterranean climate; Kardzali, Bulgaria | Bani et al. [29] |
Thlaspi tymphaeum | Brassicaceae | 7000 | Ex situ; plant analysis; serpentine soils; pseudo-total Ni concentrations 2340 mg kg−1 soil; Mediterranean climate; Malakasi, Greece | Bani et al. [29] |
Trichospermum kjelbergii | Malvaceae | 3770 | Ex situ; plant analysis; ultramafic rocks; pseudo-total Ni concentrations—7051–10,251 mg kg−1 soil; Tropical climate; Sulawesi, Indonesia | Van der Ent et al. [34] |
2.1.2. Cobalt
2.1.3. Cadmium
2.1.4. Zinc
2.1.5. Manganese
2.1.6. Selenium
2.1.7. Thallium
2.1.8. Noble Metals
Gold
Silver
Palladium
Platinum
Rhodium
2.2. Factors Influencing Metal Availability and Behavior in Soil
2.2.1. pH
2.2.2. Fertilizers
2.2.3. Chelates
3. Metal Accumulation in Plants and Their Subsequent Recovery
3.1. Mechanisms of Metal Accumulation in Plants
3.2. Metal Recovery
4. Financial Considerations of Phytomining
5. Conclusions and Need for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aziz, I.; Mujeeb, A. Halophytes for phytoremediation of hazardous metal (loid) s: A terse review on metal tolerance, bio-indication and hyperaccumulation. J. Hazard. Mat. 2022, 424, 127309. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D.; van Der Ent, A.; Echevarria, G.; Isnard, S.; Baker, A.J. Global distribution and ecology of hyperaccumulator plants. In Agromining: Farming for Metals, 2nd ed.; van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, M.O., Eds.; Springer: Cham, Switzerland, 2021; pp. 133–154. [Google Scholar] [CrossRef]
- Soleymanifar, S.; Ehsanpour, A.A.; Ghasemi, R.; Schat, H. The effect of L-histidine on nickel translocation and the activities of antioxidant enzymes in hyperaccumulator (Odontarrhena inflata) and non-accumulator (Aurinia saxatilis) plants. Plant Soil 2023, 491, 1–18. [Google Scholar] [CrossRef]
- Siyar, R.; Doulati Ardejani, F.; Norouzi, P.; Maghsoudy, S.; Yavarzadeh, M.; Taherdangkoo, R.; Butscher, C. Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water 2022, 14, 3597. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Phytomining: A review. Miner. Eng. 2009, 22, 1007–1019. [Google Scholar] [CrossRef]
- Akinbile, B.J.; Makhubela, B.C.; Ambushe, A.A. Phytomining of valuable metals: Status and prospective-a review. Int. J. Environ. Anal. Chem. 2023, 103, 39133933. [Google Scholar] [CrossRef]
- Li, Y.M.; Chaney, R.L.; Brewer, E.P.; Angle, J.S.; Nelkin, J. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ. Sci. Technol. 2003, 37, 1463–1468. [Google Scholar] [CrossRef]
- Chaney, R.L.; Chen, K.Y.; Li, Y.M.; Angle, J.S.; Baker, A.J. Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 2008, 311, 131–140. [Google Scholar] [CrossRef]
- Rai, V.; Liu, D.; Xia, D.; Jayaraman, Y.; Gabriel, J.C.P. Electrochemical approaches for the recovery of metals from electronic waste: A critical review. Recycling 2021, 6, 53. [Google Scholar] [CrossRef]
- Jaffré, T.; Brooks, R.R.; Lee, J.; Reeves, R.D. Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science 1976, 193, 579–580. [Google Scholar] [CrossRef]
- Xie, C.; Xiao, Y.; He, C.; Liu, W.S.; Tang, Y.T.; Wang, S.; Qiu, R.L. Selective recovery of rare earth elements and value-added chemicals from the Dicranopteris linearis bio-ore produced by agromining using green fractionation. J. Hazard. Mater. 2023, 443, 130253. [Google Scholar] [CrossRef]
- Robinson, B.; Fernández, J.E.; Madejón, P.; Marañón, T.; Murillo, J.M.; Green, S.; Clothier, B. Phytoextraction: An assessment of biogeochemical and economic viability. Plant Soil. 2003, 249, 117–125. [Google Scholar] [CrossRef]
- Subašić, M.; Šamec, D.; Selović, A.; Karalija, E. Phytoremediation of cadmium polluted soils: Current status and approaches for enhancing. Soil Syst. 2022, 6, 3. [Google Scholar] [CrossRef]
- Islam, M.D.; Hasan, M.M.; Rahaman, A.; Haque, P.; Islam, M.S.; Rahman, M.M. Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Appl. Sci. 2020, 2, 1315. [Google Scholar] [CrossRef]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of noble metals—A review. Chemosphere 2022, 286, 131805. [Google Scholar] [CrossRef] [PubMed]
- Nkrumah, P.N.; Chaney, R.L.; Morel, J.L. Agronomy of ‘metal crops’ used in agromining. In Agromining: Farming for Metals; Metal Resources Reviews; van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, M.O., Eds.; Springer: Cham, Switzerland, 2021; pp. 23–46. [Google Scholar] [CrossRef]
- Baker, A.J.; Brooks, R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D. Hyperaccumulation of trace elements by plants. In Phytoremediat. Of Metal-Contaminated Soils; Morel, J.L., Echevarria, G., Goncharova, N., Eds.; Springer: New York, NY, USA, 2006; pp. 1–25. [Google Scholar]
- Mustafa, A.; Zulfiqar, U.; Mumtaz, M.Z.; Radziemska, M.; Haider, F.U.; Holatko, J.; Brtnicky, M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere 2023, 328, 138574. [Google Scholar] [CrossRef]
- Minguzzi, C.; Vergnano, O. Il contenuto di nichel nelle ceneri di Alyssum Bertolonii. Atti. Soc. Tosc. Sci. Nat. 1948, 55, 49–74. [Google Scholar]
- Chaney, R.L.; Angle, J.S.; Baker, A.J.M.; Li, J.M. Method for Phytomining of Nickel, Cobalt, and Other Metal from Soil. U.S. Patent 5,711,784, 31 August 1999. [Google Scholar]
- Robinson, B.H.; Chiarucci, A.; Brooks, R.R.; Petit, D.; Kirkman, J.H.; Gregg, P.E.H.; Dominicis, V. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geochem. Explor. 1997, 59, 75–86. [Google Scholar] [CrossRef]
- Reeves, R.D.; Brooks, R.R.; Macfarlane, R.M. Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am. J. Bot. 1981, 68, 708–712. [Google Scholar] [CrossRef]
- Mohsin, M.; Nawrot, N.; Wojciechowska, E.; Kuittinen, S.; Szczepanska, K.; Dembska, G.; Pappinen, A. Cadmium Accumulation by Phragmites australis and Iris pseudacorus from Stormwater in Floating Treatment Wetlands Microcosms: Insights into Plant Tolerance and Utility for Phytoremediation. J. Environ. Manag. 2023, 331, 117339. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.M. Geobotanical and biogeochemical investigations in the sclerophyllous woodland and shrub associations of the Eastern Goldfield Area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell. As a nickel indicator and accumulator plant. J. Appl. Ecol. 1973, 10, 269–320. [Google Scholar] [CrossRef]
- Durand, A.; Goux, X.; Lopez, S.; Leglize, P.; Benizri, E. Soil nickel contamination levels entail changes in the bacterial communities associated to the rhizosphere and endosphere of Odontarrhena chalcidica. Plant Soil 2023, 493, 17–43. [Google Scholar] [CrossRef]
- Bani, A.; Echevarria, G.; Sulçe, S.; Morel, J.L. Improving the agronomy of Alyssum murale for extensive phytomining: A five-year field study. Int. J. Phytoremediat. 2015, 17, 117–127. [Google Scholar] [CrossRef]
- Galardi, F.; Corrales, I.; Mengoni, A.; Pucci, S.; Barletti, L.; Barzanti, R.; Gonnelli, C. Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ. Exp. Bot. 2007, 60, 377–384. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Argyraki, A. Soil baseline geochemistry and plant response in areas of complex geology. Application to NW Euboea, Greece. Geochemistry 2013, 73, 519–532. [Google Scholar] [CrossRef]
- Adamidis, G.C.; Aloupi, M.; Kazakou, E.; Dimitrakopoulos, P.G. Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum. Chemosphere 2014, 95, 496–502. [Google Scholar] [CrossRef]
- Keeling, S.M.; Stewart, R.B.; Anderson, C.W.N.; Robinson, B.H. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: Implications for polymetallic phytomining and phytoremediation. Int. J. Phytoremediat. 2003, 5, 235–244. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Van Balgooy, M.M.J.; Tjoa, A. Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. J. Geochem. Explor. 2013, 128, 72–79. [Google Scholar] [CrossRef]
- Becquer, T.; Rigault, F.; Jaffré, T. Nickel bioavailability assessed by ion exchange resin in the field. Commun. Soil Sci. Plant Anal. 2002, 33, 439–450. [Google Scholar] [CrossRef]
- Jaffré, T.; Pillon, Y.; Thomine, S.; Merlot, S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front. Plant. Sci. 2013, 4, 279. [Google Scholar] [CrossRef]
- Li, G.Y.; Hu, N.; Ding, D.X.; Zheng, J.F.; Liu, Y.L.; Wang, Y.D.; Nie, X.Q. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull. Environ. Contam. Toxicol. 2011, 86, 646–652. [Google Scholar] [CrossRef]
- Berazaín, R.; de la Fuente, V.; Rufo, L.; Rodríguez, N.; Amils, R.; Díez, G.B.; Asensi, A. Nickel localization in tissues of different hyperaccumulator species of Euphorbiaceae from ultramafic areas of Cuba. Plant Soil 2007, 293, 99–106. [Google Scholar] [CrossRef]
- Hamdan, A.M.; Bijaksana, S.; Tjoa, A.; Dahrin, D.; Kirana, K.H. Magnetic characterizations of nickel hyperaccumulating plants (Planchonella oxyhedra and Rinorea bengalensis) from Halmahera, Indonesia. Int. J. Phytoremediat. 2019, 21, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A.; Boyd, R.S. Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol. 2000, 146, 211–217. [Google Scholar] [CrossRef]
- Rue, M.; Paul, A.L.; Echevarria, G.; van Der Ent, A.; Simonnot, M.O.; Morel, J.L. Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’from South Africa. Metallomics 2020, 12, 1278–1289. [Google Scholar] [CrossRef]
- Parks, S. Cobalt hyperaccumulation in Rinorea cf. bengalensis (Violaceae) from Sabah: Accumulation potential and tissue and cellular-level distribution of cobalt. Plant Soil 2020, 455, 289–303. [Google Scholar] [CrossRef]
- Jaffré, T. Plant mineral nutrition on ultramafic rocks of New Caledonia. Bot. Lett. 2023, 170, 375–411. [Google Scholar] [CrossRef]
- Malik, M.; Chaney, R.L.; Brewer, E.P.; Li, Y.M.; Angle, J.S. Phytoextraction of soil cobalt using hyperaccumulator plants. Int. J. Phytoremediat. 2000, 2, 319–329. [Google Scholar] [CrossRef]
- Robinson, B.H.; Brooks, R.R.; Clothier, B.E. Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Ann. Bot. 1999, 84, 689–694. [Google Scholar] [CrossRef]
- Faucon, M.P.; Shutcha, M.N.; Meerts, P. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant Soil 2007, 301, 29–36. [Google Scholar] [CrossRef]
- Morrison, R.S.; Brooks, R.R.; Reeves, R.D.; Malaisse, F. Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 1979, 53, 535–539. [Google Scholar] [CrossRef]
- Homer, F.A.; Morrison, R.S.; Brooks, R.R.; Clemens, J.; Reeves, R.D. Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 1991, 138, 195–205. [Google Scholar] [CrossRef]
- Lange, B.; van Der Ent, A.; Baker, A.J.M.; Echevarria, G.; Mahy, G.; Malaisse, F.; Faucon, M.P. Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytol. 2017, 213, 537–551. [Google Scholar] [CrossRef]
- Olawuyi, O.J.; Bamigbegbin, B.J.; Bello, O.B. Genetic variation of morphological and yield characters of Celosia argentea L. germplasm. J. Bas. Appl. Res. Int. 2016, 13, 160–169. [Google Scholar]
- Hu, D.; Cheng, M.; Hu, K.; Zhang, W.; Yang, Y.; Xu, Q. Evaluation of cobalt hyperaccumulation and tolerance potential of the duckweed (Lemna minor L.). Ecotoxicol. Environ. Saf. 2019, 179, 79–87. [Google Scholar] [CrossRef]
- Van Der Ent, A.; Malaisse, F.; Erskine, P.D.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J.; Barnabas, A.D.; Harris, H.H. Abnormal concentrations of Cu–Co in Haumaniastrum katangense, Haumaniastrum robertii and Aeolanthus biformifolius: Contamination or hyperaccumulation? Metallomics 2019, 11, 586–596. [Google Scholar] [CrossRef]
- Medwecka-Kornaś, A. Hibiskus rhodanthus (Malvaceae): An interesting plant species in Southeastern Africa. Pol. Bot. J. 2013, 58, 325–335. [Google Scholar] [CrossRef]
- Memon, A.R.; Itô, S.; Yatazawa, M. Taxonomic characteristics in accumulating cobalt and nickel in the temperate forest vegetation of central Japan. Soil Sci. Plant Nutr. 1980, 26, 271–280. [Google Scholar] [CrossRef]
- Busbee, W.S.; Conner, W.H.; Allen, D.M.; Lanham, J.D. Composition and aboveground productivity of three seasonally flooded depressional forested wetlands in coastal South Carolina. South. Nat. 2003, 2, 335–346. [Google Scholar] [CrossRef]
- Küpper, H.; Leitenmaier, B. Cadmium-accumulating plants. Met. Ions Life Sci. 2012, 11, 373–393. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Mahar, A.; Ping, W.; Wahid, F.; Shen, F.; Zhang, Z. Phytoextraction and the economic perspective of phytomining of heavy metals. Solid Earth Discuss. 2017, 6, 1–40. [Google Scholar] [CrossRef]
- Nedelkoska, T.V.; Doran, P.M. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioeng. 2000, 67, 607–615. [Google Scholar] [CrossRef]
- Schwartz, C.; Sirguey, C.; Peronny, S.; Reeves, R.D.; Bourgaud, F.; Morel, J.L. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Int. J. Phytoremediat. 2006, 8, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Bert, V.; Bonnin, I.; Saumitou, L.P.; De Laguérie, P.; Petit, D. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol. 2002, 155, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.M.; Deng, J.C.; Li, J.T.; Zhang, J.; Hu, M.; Lin, Z.; Liao, B. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J. Integr. Plant Biol. 2008, 50, 691–698. [Google Scholar] [CrossRef]
- Claire-Lise, M.; Nathalie, V. The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol. 2012, 30, 9–14. [Google Scholar] [CrossRef]
- Zhao, F.J.; Jiang, R.F.; Dunham, S.J.; McGrath, S.P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. 2006, 172, 646–654. [Google Scholar] [CrossRef]
- Tang, Y.T.; Qiu, R.L.; Zeng, X.W.; Ying, R.R.; Yu, F.M.; Zhou, X.Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis ommercial Franch. Environ. Exp. Bot. 2009, 66, 126–134. [Google Scholar] [CrossRef]
- Dai, H.; Wei, S.; Skuza, L. Effects of different soil pH and nitrogen fertilizers on Bidens ommer L. Cd accumulation. Environ. Sci. Pollut. Res. 2020, 27, 9403–9409. [Google Scholar] [CrossRef]
- Liu, X.; Peng, K.; Wang, A.; Lian, C.; Shen, Z. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 2010, 78, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shu, W.; Lan, C. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin. Sci. Bull. 2004, 49, 29–32. [Google Scholar] [CrossRef]
- Nyquist, J.; Greger, M. Response of two wetland plant species to Cd exposure at low and neutral pH. Environ. Exp. Bot. 2009, 65, 417–424. [Google Scholar] [CrossRef]
- Lee, K.K.; Cho, H.S.; Moon, Y.C.; Ban, S.J.; Kim, J.Y. Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE J. Civ. Eng. 2013, 17, 44–50. [Google Scholar] [CrossRef]
- Wei, J.L.; Lai, H.Y.; Chen, Z.S. Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotoxicol. Environ. Saf. 2012, 84, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, X.; Guo, W.; Li, Y.; Yan, H.; Xue, X. Yield and Nutritional Quality of Water Spinach (Ipomoea aquatica) as Influenced by Hydroponic Nutrient Solutions with Different pH Adjustments. Int. J. Agric. Biol. 2017, 19, 635. [Google Scholar] [CrossRef]
- Liu, Z.; He, X.; Chen, W.; Yuan, F.; Yan, K.; Tao, D. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J. Hazard. Mat. 2009, 169, 170–175. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, H.; Deng, L.; Gong, G.; Jia, Y.; Xu, X.; Chen, H. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol. Eng. 2013, 51, 133–139. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Karyotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, L.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS Wagening. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Marmiroli, M.; Imperiale, D.; Maestri, E.; Marmiroli, N. The response of Populus spp. to cadmium stress: Chemical, morphological and proteomics study. Chemosphere 2013, 93, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy value of yield and biomass quality of poplar grown in two consecutive 4-year harvest rotations in the north-east of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, R.; Zeng, X.; Fang, X.; Yu, F.; Zhou, X.; Wu, Y. Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant. Int. J. Environ. Pollut. 2009, 38, 26–38. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hong, J.H. Nickel Tolerance and the Complexing Role of Histidine in Raphanus sativus. J. Environ. Sci. Int. 2004, 13, 711–719. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lin, Q.; Luo, Y.M.; He, Y.F.; Zhen, S.J.; Yu, Y.L.; Wong, M.H. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 2003, 50, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Koutroubas, S.D.; Papakosta, D.K.; Doitsinis, A. Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. Eur. J. Agron. 1999, 11, 227–237. [Google Scholar] [CrossRef]
- Huang, H.; Yu, N.; Wang, L.; Gupta, D.K.; He, Z.; Wang, K.; Yang, X.E. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour. Technol. 2011, 102, 11034–11038. [Google Scholar] [CrossRef]
- Vollenweider, P.; Cosio, C.; Günthardt-Goerg, M.S.; Keller, C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): Part II Microlocalization and cellular effects of cadmium. Environ. Exp. Bot. 2006, 58, 25–40. [Google Scholar] [CrossRef]
- Yang, X.E.; Long, X.X.; Ye, H.B.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Khan, A.R.; Ullah, I.; Khan, A.L.; Hong, S.J.; Waqas, M.; Park, G.S.; Shin, J.H. Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination. Water Air Soil Pollut. 2014, 225, 1–11. [Google Scholar] [CrossRef]
- Marotti, M.; Piccaglia, R.; Biavati, B.; Marotti, I. Characterization and yield evaluation of essential oils from different Tagetes species. J. Essent. Oil Res. 2004, 16, 440–444. [Google Scholar] [CrossRef]
- Martínez, M.; Bernal, P.; Almela, C.; Vélez, D.; García-Agustín, P.; Serrano, R.; Navarro-Aviñó, J. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 2006, 64, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Perronnet, K.; Schwartz, C.; Morel, J.L. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 2003, 249, 19–25. [Google Scholar] [CrossRef]
- Xie, W.Y.; Huang, Q.; Li, G.; Rensing, C.; Zhu, Y.G. Cadmium accumulation in the rootless macrophyte Wolffia ommerc and its potential for phytoremediation. Int. J. Phytoremediat. 2013, 15, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N. Metal accumulation by some plants growing on zinc-mine deposits. Oikos 1977, 29, 250–253. [Google Scholar] [CrossRef]
- Reeves, R.D.; Brooks, R.R. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ. Pollut. Ser. A Ecol. Biol. 1983, 31, 277–285. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Reeves, R.D.; Hajar, A.S.M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 1994, 127, 61–68. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L.; Angle, J.S.; Baker, A.J.M. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 1995, 59, 125–133. [Google Scholar] [CrossRef]
- Zhao, F.J.; Lombi, E.; Breedon, T.M.S.P. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 2000, 23, 507–514. [Google Scholar] [CrossRef]
- Hu, P.J.; Qiu, R.L.; Senthilkumar, P.; Jiang, D.; Chen, Z.W.; Tang, Y.T.; Liu, F.J. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot. 2009, 66, 317–325. [Google Scholar] [CrossRef]
- Grimm, M. Feasibility of Brassica juncea as a Hyperaccumulator in Phytomining of Cu and Zn. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Grison, C.M.; Mazel, M.; Sellini, A.; Escande, V.; Biton, J.; Grison, C. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ. Sci. Pollut. Res. 2015, 22, 5667–5676. [Google Scholar] [CrossRef]
- Peer, W.A.; Mahmoudian, M.; Freeman, J.L.; Lahner, B.; Richards, E.L.; Reeves, R.D.; Salt, D.E. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol. 2006, 172, 248–260. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van Der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
- Balafrej, H.; Bogusz, D.; Triqui, Z.E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc hyperaccumulation in plants: A review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xiao, T.; Wu, Y.; Ao, Z.; Ning, Z. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Chemosphere 2012, 86, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Shimwell, D.W.; Laurie, A.E. Lead and zinc contamination of vegetation in the Southern Pennines. Environ. Pollut. 1972, 3, 291–301. [Google Scholar] [CrossRef]
- Reeves, R.D.; Brooks, R.R. European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J. Geochem. Explor. 1983, 18, 275–283. [Google Scholar] [CrossRef]
- Yang, X.E.; Long, X.; Ni, W.; Fu, C. Sedum alfredii H: A new Zn hyperaccumulating plant first found in China. Chin. Sci. Bull. 2002, 47, 1634–1637. [Google Scholar] [CrossRef]
- Qiu, R.; Fang, X.; Tang, Y.; Du, S.; Zeng, X.; Brewer, E. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. Int. J. Phytoremediat. 2006, 8, 299–310. [Google Scholar] [CrossRef]
- Wu, C.; Liao, B.; Wang, S.L.; Zhang, J.; Li, J.T. Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). Int. J. Phytoremediat. 2010, 12, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Losfeld, G.; L’huillier, L.; Fogliani, B.; Coy, S.M.; Grison, C.; Jaffré, T. Leaf-age and soil-plant relationships: Key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ. Sci. Pollut. Res. 2015, 22, 5620–5632. [Google Scholar] [CrossRef] [PubMed]
- Jaffré, T. Accumulation Du Manganèse Par Les Proteacées de Nouvelle-Calédonie. Acad. Sci. 1979, 289, 425–428. [Google Scholar]
- Mizuno, T.; Asahina, R.; Hosono, A.; Tanaka, A.; Senoo, K.; Obata, H. Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J. Plant Nutr. 2008, 31, 1811–1819. [Google Scholar] [CrossRef]
- Fernando, D.R.; Marshall, A.; Baker, A.J.; Mizuno, T. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: Present status and future directions. Front. Plant Sci. 2013, 4, 319. [Google Scholar] [CrossRef]
- Fernando, D.R.; Guymer, G.; Reeves, R.D.; Woodrow, I.E.; Baker, A.J.; Batianoff, G.N. Foliar Mn accumulation in eastern Australian herbarium specimens: Prospecting for ‘new’Mn hyperaccumulators and potential applications in taxonomy. Ann. Bot. 2009, 103, 931–939. [Google Scholar] [CrossRef]
- Abubakari, F.; Nkrumah, P.N.; Erskine, P.D.; Brown, G.K.; Fernando, D.R.; Echevarria, G.; van Der Ent, A. Manganese (hyper) accumulation within Australian denhamia (Celastraceae): An assessment of the trait and manganese accumulation under controlled conditions. Plant Soil 2021, 463, 205–223. [Google Scholar] [CrossRef]
- Liu, J.; Shang, W.; Zhang, X.; Zhu, Y.; Yu, K. Mn accumulation and tolerance in Celosia argentea Linn: A new Mn-hyperaccumulating plant species. J. Hazard. Mater. 2014, 267, 136–141. [Google Scholar] [CrossRef]
- Bidwell, S.D.; Woodrow, I.E.; Batianoff, G.N.; Sommer-Knudsen, J. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct. Plant Biol. 2002, 29, 899–905. [Google Scholar] [CrossRef]
- Xue, S.G.; Chen, Y.X.; Reeves, R.D.; Baker, A.J.; Lin, Q.; Fernando, D.R. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca ommerc Roxb. (Phytolaccaceae). Environ. Pollut. 2004, 131, 393–399. [Google Scholar] [CrossRef]
- Deng, H.; Li, M.; Chen, Y.; Luo, Y.; Yu, F. A new discovered manganese hyperaccumulator-Polygonum pubescens Blume. Fresenius Environ. Bull. 2010, 19, 94–99. [Google Scholar]
- Liu, K.; Yu, F.; Chen, M.; Zhou, Z.; Chen, C.; Li, M.S.; Zhu, J. A newly found manganese hyperaccumulator—Polygonum lapathifolium Linn. Int. J. Phytoremediat. 2016, 18, 348–353. [Google Scholar] [CrossRef]
- Yang, S.X.; Deng, H.; Li, M.S. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ. 2008, 54, 441–446. [Google Scholar] [CrossRef]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.R.; Feist, L.J.; Varvel, T.W.; Thomason, D.N.; Zhang, Y. Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 2003, 249, 157–165. [Google Scholar] [CrossRef]
- Reeves, R.D. Metal-Accumulating Plants. In Phytoremediat. Of Toxic Metals: Using Plants to Clean Up the Environment; Ensley, B.D., Ed.; John Wiley & Son: London, UK, 2000; pp. 193–229. [Google Scholar]
- Moon, D.M. Yield potential of Asparagus officinalis L. N. Z. J. Exp. Agric. 1976, 4, 435–438. [Google Scholar] [CrossRef]
- Nadaf, S.K.; Al-Khamisi, S.A.; AI-Lawati, A.H.; Ibrahim, Y.M.; EI-Hag, M.G. Productivity of saltbush (Atriplex) species under saline soil and water conditions in Oman. J. Agric. Mar. Sci. 1999, 4, 41–46. [Google Scholar] [CrossRef]
- Nedjimi, B. Measurement of selenium in two Algerian chenopods (Atriplex canescens (Pursh.) Nutt. And Suaeda ommercia (Linn.) Forssk). Measurement 2018, 129, 256–259. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, J.; Wang, J.; Liu, X.; He, J.; Zhang, R.; Wu, M. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Food Chem. 2023, 427, 136710. [Google Scholar] [CrossRef]
- Huang, C.; Ying, H.; Yang, X.; Gao, Y.; Li, T.; Wu, B.; Wang, L. The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov. 2021, 7, 62. [Google Scholar] [CrossRef]
- O’Donohue, B.; Hiti-Bandaralage, J.; Gleeson, M.; O’Brien, C.; Harvey, M.A.; van der Ent, A.; Hayward, A. Tissue culture tools for selenium hyperaccumulator Neptunia amplexicaulis for development in phytoextraction. Nat. Prod. Bioprosp. 2022, 12, 28. [Google Scholar] [CrossRef]
- Pinto Irish, K.; Harvey, M.A.; Erskine, P.D.; van der Ent, A. Root foraging and selenium uptake in the Australian hyperaccumulator Neptunia amplexicaulis and non-accumulator Neptunia gracilis. Plant Soil 2021, 462, 219–233. [Google Scholar] [CrossRef]
- Harris, J.; Schneberg, K.A.; Pilon-Smits, E.A. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 2014, 239, 479–491. [Google Scholar] [CrossRef]
- Leblanc, M.; Petit, D.; Deram, A.; Robinson, B.H.; Brooks, R.R. The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ. Geol. 1999, 94, 109–113. [Google Scholar] [CrossRef]
- Sinha, R.; Singh, A.K.; Bauddh, K.; Sharma, T.R.; Sharma, P. Phytomining: A sustainable approach for recovery and extraction of valuable metals. In Phytorestoration of Abandoned Mining and Oil Drilling Sites; Bauddh, K., Korstad, J., Sharma, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 487–506. [Google Scholar] [CrossRef]
- Mohan, B.S. Phytomining of gold. Curr. Sci. 2005, 88, 1021–1022. [Google Scholar]
- Corzo, R.A.; Chaney, R.L.; Baker, A.J.; Edraki, M.; Erskine, P.D.; Echevarria, G.; van der Ent, A. Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant Soil 2020, 449, 11–37. [Google Scholar] [CrossRef]
- Anderson, C.W.; Brooks, R.R.; Stewart, R.B.; Simcock, R. Harvesting a crop of gold in plants. Nature 1998, 395, 553–554. [Google Scholar] [CrossRef]
- Wilson, C.V.; Anderson, C.W.; Rodriguez, L.M. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J. Environ. Manag. 2012, 111, 249–257. [Google Scholar] [CrossRef]
- Msuya, F.A.; Brooks, R.R.; Anderson, C.W. Chemically-induced uptake of gold by root crops: Its significance for phytomining. Gold Bull. 2000, 33, 134–137. [Google Scholar] [CrossRef]
- Lamb, A.E.; Anderson, C.W.N.; Haverkamp, R.G. The extraction of gold from plants and its application to phytomining. Chem. N. Z. 2001, 65, 31–33. [Google Scholar]
- Vural, A.; Safari, S. Phytoremediation ability of Helichrysum arenarium plant for Au and Ag: Case study at Demirören village (Gümüşhane, Turkey). Gold Bull. 2022, 55, 129–136. [Google Scholar] [CrossRef]
- Harris, A.T.; Bali, R. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanopart. Res. 2008, 10, 691–695. [Google Scholar] [CrossRef]
- Fuchs, W.A.; Rose, A.W. The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ. Geol. 1974, 69, 332–346. [Google Scholar] [CrossRef]
- Kothny, E.L. Palladium in plant ash. Plant Soil 1979, 53, 547–550. [Google Scholar] [CrossRef]
- Nemutandani, T.; Dutertre, D.; Chimuka, L.; Cukrowska, E.; Tutu, H. The potential of Berkheya coddii for phytoextraction of nickel, platinum, and palladium contaminated sites. Toxicol. Environ. Chem. 2006, 88, 175–185. [Google Scholar] [CrossRef]
- Walton, D. The Phytoextraction of Gold and Palladium from Mine Tailings. Ph.D. Thesis, Massey University, Wellington, New Zealand, 2002. [Google Scholar]
- Aquan, H.M. Phytoextraction of Palladium and Gold from Broken Hill Gossan. Ph.D. Thesis, Massey University, Manawatū, New Zealand, 2015. [Google Scholar]
- Harumain, Z.A.S.; Parker, H.L.; Austin, M.J.; McElroy, M.C.; Andrea, M.G.; Robert, M.C.; WN, A.C.; Luca, C.; Graedel, T.E.; Rylott, E.L.; et al. Toward Financially Viable Phytoextraction and Production of Plant-Based Palladium Catalysts. Environ. Sci. Technol. 2017, 51, 2992–3000. [Google Scholar] [CrossRef]
- Kovacs, H.; Dobo, Z.; Koos, T.; Gyimesi, A.; Nagy, G. Influence of the flue gas temperature on the behavior of metals during biomass combustion. Energy Fuels 2018, 32, 7851–7856. [Google Scholar] [CrossRef]
- Diehl, D.B.; Gagnon, Z.E. Interactions between essential nutrients with platinum group metals in submerged aquatic and emergent plants. Water Air Soil Pollut. 2007, 184, 255–267. [Google Scholar] [CrossRef]
- Kińska, K.; Kowalska, J. Comparison of platinum, rhodium, and palladium bioaccumulation by Sinapis alba and their influence on phytochelatin synthesis in plant tissues. Pol. J. Environ. Stud. 2019, 28, 1735–1740. [Google Scholar] [CrossRef]
- Bonanno, G. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf. 2011, 74, 1057–1064. [Google Scholar] [CrossRef]
- Pujari, G.N. Phytomining of Low Grade Ore. SGAT Bull. 2018, 19, 15–22. [Google Scholar]
- Custos, J.M.; Moyne, C.; Sterckeman, T. How root nutrient uptake affects rhizosphere pH: A modelling study. Geoderma 2020, 369, 114314. [Google Scholar] [CrossRef]
- Chaney, R.L.; Angle, J.S.; Broadhurst, C.L.; Peters, C.A.; Tappero, R.V.; Sparks, D.L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 2007, 36, 1429–1443. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Qiu, R. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Bennett, F.A.; Tyler, E.K.; Brooks, R.R.; Gregg, P.E.H.; Stewart, R.B. Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In Plants That Hyperaccumulate Heavy Metals; Brooks, R.R., Ed.; CAB International: New York, NY, USA, 1998; pp. 249–259. [Google Scholar]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Factors affecting phytoextraction: A review. Pedosphere 2016, 26, 148–166. [Google Scholar] [CrossRef]
- Schmidt, U. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 2003, 32, 1939–1954. [Google Scholar] [CrossRef]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable ecological restoration of sterile dumps using Robinia pseudoacacia. Sustainbility 2021, 13, 14021. [Google Scholar] [CrossRef]
- Ebbs, S.D.; Lasat, M.M.; Brady, D.J.; Cornish, J.; Gordon, R.; Kochian, L.V. Phytoextraction of Cadmium and Zinc from a Contaminated Soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Barona, A.; Aranguiz, I.; Elıas, A. Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environ. Pollut. 2001, 113, 79–85. [Google Scholar] [CrossRef]
- Evangelou, M.W.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef]
- Robinson, B.H.; Brooks, R.R.; Howes, A.W.; Kirkman, J.H.; Gregg, P.E.H. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J. Geochem. Explor. 1997, 60, 115–126. [Google Scholar] [CrossRef]
- Meers, E.; Ruttens, A.; Hopgood, M.J.; Samson, D.; Tack, F.M.G. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 2005, 58, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Raskin, I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Shen, Z.; Zhu, J.; Jia, X.; Ok, Y.S.; Rinklebe, J. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2724–2774. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Gendre, D.; Czernic, P.; Conéjéro, G.; Pianelli, K.; Briat, J.F.; Lebrun, M.; Mari, S. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J. 2007, 49, 1–15. [Google Scholar] [CrossRef]
- Baruah, S.; Bora, M.S.; Sharma, P.; Deb, P.; Sarma, K.P. Understanding of the distribution, translocation, bioaccumulation, and ultrastructural changes of Monochoria hastata plant exposed to cadmium. Water Air Soil Pollut. 2017, 228, 1–21. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the ommercialization stage. J. Energy Chem. 2019, 39, 109–143. [Google Scholar] [CrossRef]
- Zhang, X.; Houzelot, V.; Bani, A.; Morel, J.L.; Echevarria, G.; Simonnot, M.O. Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int. J. Phytoremediat. 2014, 16, 1058–1072. [Google Scholar] [CrossRef]
- Dastyar, W.; Raheem, A.; He, J.; Zhao, M. Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process. J. Chem. Eng. 2019, 358, 759–785. [Google Scholar] [CrossRef]
- Hazotte, C.; Laubie, B.; Pacault, S.; Dufaud, O.; Simonnot, M.O. Evaluation of the performance of nickel hyperaccumulator plants as combustion fuel. Biomass Bioenergy 2020, 140, 105671. [Google Scholar] [CrossRef]
- Soundararajan, R.K.V.; Varjani, S.; Chandrasekaran, R.; Kandasamy, D. Recovery of Gold and Other Precious Metals by Biosorption. In Sustainable Resource Management; Guo, W., Ngo, H.H., Surampalli, R.Y., Zhang, T.C., Eds.; John Wiley & Sons: Weinheim, Germany, 2021; Volume 2, pp. 463–488. [Google Scholar] [CrossRef]
- Won, S.W.; Kotte, P.; Wei, W.; Lim, A.; Yun, Y.S. Biosorbents for recovery of precious metals. Bioresour. Technol. 2014, 160, 203–212. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of the Interior. Mineral Commodity Summaries. U.S. Geological Survey 2003; U.S. Department of the Interior: Reston, VA, USA, 2003; p. 210. [CrossRef]
- Lee, J.; Kaunda, R.B.; Sinkala, T.; Workman, C.F.; Bazilian, M.D.; Clough, G. Phytoremediation and phytoextraction in Sub-Saharan Africa: Addressing economic and social challenges. Ecotoxicol. Environ. Saf. 2021, 226, 112864. [Google Scholar] [CrossRef]
- Anderson, C.W.N.; Brooks, R.R.; Chiarucci, A.; LaCoste, C.J.; Leblanc, M.; Robinson, B.H.; Stewart, R.B. Phytomining for nickel, thallium and gold. J. Geochem. Explor. 1999, 67, 407–415. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Baker, A.J.; Chaney, R.L.; Erskine, P.D.; Echevarria, G.; Morel, J.L.; van der Ent, A. Current status and challenges in developing nickel phytomining: An agronomic perspective. Plant Soil 2016, 406, 55–69. [Google Scholar] [CrossRef]
Element | Hyperaccumulation Threshold (mg kg−1) | Number of Hyperaccumulator Plant Species | Reference |
---|---|---|---|
Ag | 1 | - | Sheoran et al. [5] |
Au | 1 | - | Sheoran et al. [5] |
Cd | 100 | 24 | Van der Ent et al. [18] |
Co | 300 | 29 | Krämer et al. [19] |
Mn | 10,000 | 22 | Baker and Brooks [17] |
Ni | 1000 | 532 | Soleymanifar et al. [3] |
Se | 100 | 20 | Reeves [20] |
Tl | 100 | 1 | Sheoran et al. [5] |
Zn | 3000 | 24 | Van der Ent et al. [18] |
Plant Species | Family | Co (mg kg−1 DW)/Biomass Yield (t ha−1) | Experimental Conditions—Country | References |
---|---|---|---|---|
Acalypha cupricola | Euphorbiaceae | 207–904 | Ex situ; plant analysis; samples from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Aeollanthus subacaulis | Lamiaceae | 0–1900 | Pot experiment (200 g sterilized soil); soil containing 10,000 mg Co kg−1 as nitrate; Congo | Morisson et al. [47] |
Alectra sessiliflora | Orobanchaceae | 21–866 | Ex situ; plant analysis; samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Alyssum corsicum | Brassicaceae | 1080 (shoot)/4.2–10 | Field experiment in various soil types; 150 kg N ha−1, 100 kg P ha−1, and 75 kg K ha−1 were applied; Beltsville, USA | Malik et al. [44] |
Alyssum heldreichii | Brassicaceae | 1000 | Pot experiment; plants spiked with different concentrations of metals; New Zealand | Homer et al. [48] |
Alyssum murale | Brassicaceae | 2070 (shoot)/10.2–20 | Field experiment in various soil types; 150 kg N ha−1, 100 kg P ha−1, and 75 kg K ha−1 were applied; Beltsville, USA | Malik et al. [44] |
Alyssum pintodasilvae | Brassicaceae | 1000 | Pot experiment; plants spiked with different concentrations of metals; New Zealand | Homer et al. [48] |
Alyssum tenium | Brassicaceae | 1000 | Pot experiment; plants spiked with different concentrations of metals; New Zealand | Homer et al. [48] |
Alyssum troodii | Brassicaceae | 10–2325 | Pot experiment; plants spiked with different concentrations of metals; Cyprus | Lange et al. [49] |
Anisopappus chinensis | Asteraceae | 3–1300 | Ex situ; leaf analysis; Equatorial climate; Congo | Lange et al. [49] |
Aporosa chalarocarpa | Phyllanthaceae | 468 | Ex situ; leaf analysis; samples collected from ultramafic rocks; Tropical climate; Sabah, Malaysia | Lange et al. [49] |
Berkeya coddii | Asteraceae | 40–2116/4.96–9.30 | Experiment in controlled climate glasshouses; plants spiked with 4–500 mg Co kg−1; New Zealand | Keeling et al. [33] Rue et al. [41] |
Buchnera henriquesii | Orobanchaceae | 404–930 | Ex situ; plant analysis; plant samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Celosia trigyna L. | Amaranthaceae | 75–501/9.5 | Ex situ; plant analysis; plant samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Olawuyi et al. [50] |
Crepidorhopalon perennis | Linderniaceae | 61–1105/0.32 | Ex situ; plant analysis; plant samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Crepidorhopalon tenuis | Linderniaceae | 8–605/0.16–0.32 | Ex situ; plant analysis; plant samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Lemna minor L. | Araceae | 5000 | Pre-cultivated under laboratory conditions; fertilized with Hoagland solution; plants spiked with 0–200 μΜ CoCl2·6H2O; Nanjing, China | Hu et al. [51] |
Glochidion cf. sericeum | Phyllanthaceae | 442–1310 | Ex situ; leaf analysis; leaf samples collected from ultramafic rocks; Tropical climate; Sabah, Malaysia | Lange et al. [49] |
Haumaniastrum katangense | Lamiaceae | 864 | Ex situ; leaf analysis; leaf samples collected from Cu/Co-Zn/Cu mine sites; background Co levels 1.2–85 mg kg−1; Congo | Van der Ent et al. [52] |
Haumaniastrum robertii | Lamiaceae | 6160/20 | Ex situ; leaf analysis; leaf samples collected from Cu/Co-Zn/Cu mine sites; background Co levels 1.2–85 mg kg−1; Congo | Lange et al. [49] |
Hibiscus rhodanthus | Malvaceae | 42–274/0.054–1.6 | Ex situ; plant analysis; Sub-tropical climate; Nyika Plateu, Zambia and Mozambique | Medwecka [53] |
Nyssa sylvatica var. biflora | Nyssaceae | 0–438/6 | Ex situ; plant analysis; plant samples from granite derivatives; available Co content in soil—2.5%; Inabu-cho, Japan | Memon and Yatazawa [54] |
Nyssa sylvatica var. sylvatica | Nyssaceae | 800/6 | Ex situ; plant analysis; South Carolina, USA | Busbee et al. [55] |
Rinorea bengalensis | Violaceae | 0.5–1200/30–40 | Ex situ; leaf analysis; ultramafic rocks; Tropical climate; Halmahera Island, Indonesia | Hamdan et al. [39] |
Rinorea javanica | Violaceae | 3–670/30–40 | Ex situ; leaf analysis; leaf samples collected from ultramafic rocks; Tropical climate; Halmahera Island, Indonesia | Hamdan et al. [39] |
Triumfetta welwitschii | Malvaceae | 162–1971 | Ex situ; plant analysis; plant samples collected from Co/Cu mine sites; Equatorial climate; Katanga, Congo | Faucon et al. [46] |
Vernoniastrum latifolium | Asteraceae | 82–549 | Ex situ; plant analysis; Equatorial climate; Congo | Lange et al. [49] |
Vigna dolomitica | Fabaceae | 241–540 | Ex situ; plant analysis; Equatorial climate; Congo | Lange et al. [49] |
Plant Species | Family | Achieved Concentration (mg kg−1)/Biomass Yield (t ha−1) | Experimental Conditions—Country | References |
---|---|---|---|---|
Arabidopsis halleri | Brassicaceae | 117.2 | Pot experiment; nutrient solution applied as fertilizer; plants exposed to 0–100 μΜ CdSO4; Blankerode, Germany | Zhao et al. [63] |
Arabis paniculata | Brassicaceae | 457 | Hydroponics experiment; Hoagland solution applied as fertilizer; plants spiked with 0–267 μΜ CdCl2·2.5H2O; Yunnan Province, China | Tang et al. [64] |
Bidens pilosa | Asteraceae | 400.7/5–6.7 | Field experiment with total Cd concentration in soil 19.63 mg kg-1; (NH4)2SO4 and Ca(NO3)2 were added at 200 mg kg−1 as fertilizers; Shaanxi, China | Dai et al. [65] |
Centela asiatica | Apiaceae | 105 | Field and laboratory experiment; field pseudo-total Cd concentration—124–1000 mg kg−1, plants were spiked at levels 0–5 mg L−1 in lab; South China | Liu et al. [66] |
Viola baoshanensis | Cyperaceae | 1168 | Field survey and greenhouse experiment; nutrient solution was applied as fertilizer; plants spiked with 0–30 mg L−1; Humid sub-tropical climate; Hunan Province, China | Liu et al. [67] |
Elodea canadensis | Hydrocharitaceae | 300 | Hydroponics experiment; plants exposed to 0–0.5 μΜ CdCl2; Stockholm, Sweden | Ali et al. [57] Nyquist and Greger [68] |
Helianthus annus | Helianthoideae | 230/4.5 | Pot experiment; background total Cd concentration in soil—30 mg kg−1; pot spiked with 0–500 mg Cd L−1 solution; Tropical climate; Korea | Lee et al. [69] |
Impatiens walleriana | Balsaminaceae | 1168 | Pot experiment; containing total Cd—0.61 mg kg−1; soil spiked with 20, 40, and 80 mg Cd(NO3) kg−1; China | Wei et al. [70] |
Ipomoea aquatica | Convolvulaceae | 138/7–30 | Hydroponics experiment; nutrient solution containing 1 M of HNO3, H3PO4, and H2SO4 was added; Beijing, China | Wang et al. [71] |
Lonicera japonica | Caprifoliaceae | 470.25/2.1–3.8 | Hydroponics experiment; plant samples were collected from uncontaminated site; Hoagland solution was applied as fertilizer; plants were spiked with 0–50 mg CdCl2·2.5H2O L−1; China | Liu et al. [72] |
Siegesbeckia orientalis L. | Asteraceae | 192.92–6762 | Field experiment and pot experiment; total Cd concentration 28.44 and 150 mg kg−1 in soil and pots respectively; Huidong, China | Zhang et al. [73] |
Panicum virgatum | Poaceae | 280/18 | Field experiment; N-fertilization ranged from 0–240 kg ha−1; Mediterranean climate; Thessaly, Greece | Giannoulis et al. [74] |
Phytolacca americana | Phytolaccaceae | 42–637.7/0.53 | Field experiment and hydroponic experiment; pseudo-total concentration in soil 1–1000 mg kg−1, plants spiked with 0–100 μΜ CdCl2; Hoagland solution applied as fertilizer; China | Liu et al. [66] |
Potentilla griffithi | Rosaceae | 174 | Field experiment; contaminated soil contained a total of 331 mg Cd kg−1; Monsoon climate; Lanping, China | Hu et al. [51] |
Populus nigra | Salicaceae | 96.8/82 | Hydroponics experiment; plant cuttings were exposed to 0–20 μΜ CdSO4; Rome, Italy | Marmiroli et al. [75] Stolarski et al. [76] |
Picris divaricata | Asteraceae | 1343 | Pot experiment with contaminated soil; total Cd amount in soil—15 mg kg−1; Monsoon climate; Lanping, China | Tang et al. [77] |
Raphanus sativus | Brassicaceae | 326.75/33–42 | Hydroponics experiment; 400 μmol L−1 CaCl2 was added; Korea, and Jiangxi, China | Kim and Hong [78] Chen et al. [79] |
Ricinus communis | Euphorbiaceae | 288/2–2.6 | Ex situ; plant analysis; plant sampling from Cd contaminated sites; Cd concentration on soil—2.8 mg kg−1; Subtropical climate; Zhejiang, China | Koutroubas et al. [80] Huang et al. [81] |
Salix viminalis | Salicaceae | 200/12 | Hydroponics experiment; plant material spiked at 0, 10, 50, 200 μΜ CdCl2; Birmensdorf, Switzerland | Stolarski et al. [76] Vollenweider et al. [82] |
Sedum alfredii | Crassulaceae | 6500–9000 | Greenhouse experiment in pots; nutrient solution was applied; plants were treated with 12.5–800 μmol Cd L−1; Quzhou, China | Yang et al. [83] |
Solanum nigrum L. | Solanaceae | 307–3163 | Pot experiment; soil in pots spiked with various Cd concentrations (as CdCl2) up to 80 mg kg−1; Daegu, Korea | Khan et al. [84] |
Tagetes patula | Asteraceae | 324/26.8 | Pot experiment; containing total Cd—0.61 mg kg−1; soil spiked with 20, 40, and 80 mg Cd(NO3) kg−1; China | Marotti et al. [85] Wei et al. [70] |
Thlaspi caerulescens | Brassicaceae | 380–7400/1.6 | Pot experiment containing contaminated soil—total Cd 20.3 mg kg−1; fertilized with 13 mg N, 33 mg P, and 41 mg K kg−1 soil; Northern France | Martínez et al. [86]; Perronnet et al. [87] |
Wolffia globosa | Araceae | 500/0.08 | Hydroponics experiment in greenhouse; Hoagland solution applied as fertilizer; solution spiked at 0–100 μΜ Cd(NO3); China | Xie et al. [88] |
Plant Species | Family | Achieved Concentrations (%) (Aerial Parts Are Specified)/Biomass Yield (t ha−1) | Experimental Conditions—Country | References |
---|---|---|---|---|
Anthyllis vulneraria | Fabaceae | >1% (leaf)/0.1–0.4 | Ex situ; plant analysis; plant samples were assisted by symbiotic bacteria; spiked with 0–35 mM ZnSO4; Saint-Laurent-Le-Minier, France | Grison et al. [97] |
Arabidopsis helleri | Brassicaceaa | >1% (leaf) | Pot experiment; nutrient solution applied as fertilizer; plants exposed to 0–100 μΜ ZnSO4; Blankerode, Germany | Zhao et al. [94] Peer et al. [98] |
Arabis paniculata | Brassicaceae | >2% (leaf) | Hydroponics experiment; Hoagland solution applied as fertilizer; plants spiked with 0–2447 μΜ ZnSO4·7H2O; Yunnan Provinence, China | Reeves et al. [99]; Tang et al. [64] |
Corydalis davidii | Papaveraceae | >1% (leaf) | Field study and hydroponics experiment; total Zn in soil—9847 mg kg−1; plants spiked with 50–400 mg Zn(NO3)2 L−1 in hydroponic experiment; Sub-tropical climate; Magu, China | Balafrej et al. [100]; Lin et al. [101] |
Haumaniastrum katangense | Lamiaceae | 1.98% (shoot)/20 | Field study, in situ leaf samples; Zair | Balafrej et al. [100] |
Noccaea alpestre | Brassicaceaa | >1% (leaf) | Ex situ; plant analysis; total Zn in soil 1900–35,000 mg kg−1; Derbyshire, England | Shimwell and Laurie [102] |
Noccaea brachypetalum | Brassicaceaa | 2% (shoot) | Field study, in situ leaf samples; Paris, France | Reeves and Brooks [103] |
Noccaea bulbosum Spruner | Brassicaceaa | 1.05% (shoot) | Field study, in situ leaf samples; Mediterranean climate; Athens, Greece | Reeves and Brooks [103] |
Noccaea caerulescens | Brassicaceaa | 2.73% (leaf)/1.6 | Field study, in situ leaf samples; Temperate climate; Belgium | Martínez et al. [85] Reeves and Brooks [103] |
Noccaea calaminare | Brassicaceaa | 3.96% (leaf) | Field study, in situ leaf samples; Temperate climate; München, Germany | Reeves et al. [99] Reeves and Brooks [103] |
Noccaea cepaeifolium | Brassicaceaa | 2.10% (shoot) | Field study; total Zn concentration in soil—17,300 mg kg−1; Mediterranean climate; Northern Italy | Reeves and Brooks [103] |
Noccaea eburneosa | Brassicaceaa | 1.05% (shoot) | Field study, in situ leaf samples; Temperate climate; Zurich, Switzerland | Balafrej et al. [100] Reeves and Brooks [103] |
Noccaea limosellifolium | Brassicaceaa | 1.10% (shoot) | Field study, in situ leaf samples; Paris, France | Reeves and Brooks [103] |
Noccaea praecox | Brassicaceaa | 2.10% (leaf) | Field study, in situ leaf samples; Mediterranean climate; Bulgaria | Reeves and Books [103] |
Noccaea stenopterum | Brassicaceaa | 1.60% (leaf) | Field study, in situ leaf samples; Temperate climate; Spain | Reeves and Brooks [103] |
Sedum alfredii | Crassulaceae | 0.45–1.9% (shoot) | Field survey and greenhouse experiment; plants exposed to 5–320 mg Zn L−1 (as ZnSO4·7H2O); Sub-tropical humid climate; Zhejiang Province, China | Yang et al. [104] |
Pieris divaricata | Ericaceae | >6% (shoot) | Pot experiment with contaminated soil; total Zn amount in soil—352 mg kg−1; Sub-tropical climate; Lanping, China | Balafrej et al. [100] |
Potentilla griffithii | Rosaceae | >2.2% (leaf) | Field survey and hydroponics experiment; Hoagland solution was added as fertilizer; plants spiked with ZnSO4·7H2O at 20–320 mg L−1; Yunnan Province; China | Reeves et al. [99] Qiu et al. [105] |
Sedum plumbizincicola | Crassulaceae | 0.45–1.9% (shoot) | Field survey and greenhouse experiment; plants exposed to 5–320 mg Zn L−1 (as ZnSO4·7H2O); Sub-tropical humid climate; Zhejiang Province, China | Reeves et al. [99] Yang et al. [104] |
Viola baoshanensis | Violaceae | >0.9% | Field survey and greenhouse experiment; modified Hoagland solution was applied as fertilizer; plants spiked with 0–130 mg ZnSO4·7H2O L−1; Humid sub-tropical climate; Hunan Province, China | Balafrej et al. [100]; Wu et al. [106] |
Plant Species | Family | Achieved Concentration (mg kg−1)/Biomass Yield (t ha−1) | Experimental Conditions—Country | Reference |
---|---|---|---|---|
Alyxia poyaensis | Apocynaceae | 1.4% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Losfeld et al. [107] |
Beaupreopsis paniculata | Urticaceae | 1.2% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Jaffré [108] |
Chengiopanax sciadophylloides | Araliaceae | 2.4% | 7-month field trial; exchangeable Mn in soil—931 mg kg−1; Mie, Japan | Mizuno et al. [109] |
Denhamia cunninghamii | Sapindaceae | 2.5% | Ex situ; plant analysis; Queensland, Australia | Fernando et al. [110]; Fernando et al. [111] |
Denhamia silvestris | Sapindaceae | 1.2% | Pot experiment; medium spiked with soluble Mn2+ at 0, 250, 500, and 1000 mg kg−1; Queensland, Australia | Abubakari et al. [112] |
Denhamia fournieri | Sapindaceae | 2.0% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Fernando et al. [110]; |
Celosia argentea | Sapindaceae | 3.3% | Field survey and hydroponics experiment; Hoagland solution applied as fertilizer; plants exposed to 2.5–600 mg Mn L−1; Guangxi Province, China | Jaffré [36] Liu et al. [113] |
Garcinia amplexicaulis | Clusiaceae | 1.2%/280 | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Jaffré [36] |
Gossia bamagensis | Myrtaceae | 4.0% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110]; Fernando et al. [111] |
Gossia bidwillii | Myrtaceae | 1.9% (leaf), 2.6% (bark) | Ex situ; plant analysis; Sub-tropical climate; Brisbane, Australia | Losfeld et al. [107]; Bidwell et al. [114] |
Gossia clusioides | Myrtaceae | 1.0% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Jaffré [36] |
Gossia diversifolia | Myrtaceae | 1.8% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Losfeld et al. [107] |
Gossia fragrantissima | Myrtaceae | 3.5% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110] Fernando et al. [111] |
Gossia gonoclada | Myrtaceae | 1.5% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110]; Fernando et al. [111] |
Gossia lucida | Myrtaceae | 1.5% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110] Fernando et al. [111] |
Gossia sankowskiorum | Myrtaceae | 3.0% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110] Fernado et al. [111] |
Gossia shepherdii | Myrtaceae | 1.5% | Ex situ; leaf analysis; Queensland, Australia | Fernando et al. [110] Fernado et al. [111] |
Phytolacca americama | Proteaceae | 1.1% | Ex situ; analysis; Semi-tropical climate; New Caledonia | Jaffré [108] |
Phytolacca acinosa | Phytolaccaceae | 1.9% | Field survey and hydroponics experiment; Hoagland’s nutrient solution was applied; plants were exposed to 0–15,000 μmol Mn L−1 (as MnCl2·4H2O); Hunan Province, China | Xue et al. [115] |
Polygonum pubescens | Polygonaceae | 1.6% | Field survey and hydroponics experiment; Hoagland solution applied; Plants exposed to 0–20 mmol Mn L−1 (as MnCl2·4H2O); China | Deng et al. [116] |
Polygonum lapathifolium | Araliaceae | 1.4% | Field survey and hydroponics experiment; Hoagland solution was applied; plants exposed to 0–16 mmol Mn L−1 (as MnCl2·4H2O); Guangxi Province, China | Liu et al. [117] |
Schima superba | Typhaceae | 1.2% | Pot experiment; Hoagland solution was added as a fertilizer; S. superba saplings were exposed to 0–200 mmol L−1 MnCl2·4H2O; China | Yang et al. [118] |
Virotia neurophylla | Typhaceae | 5.5% | Ex situ; plant analysis; Semi-tropical climate; New Caledonia | Jaffré [108] |
Plant Species | Family | Achieved Concentration (mg kg−1)/Biomass Yield (t ha−1) | Experimental Conditions—Country | Reference |
---|---|---|---|---|
Asparagus bisculateus | Asparagaceae | 0.88%/12.3 | Ex situ; plant analysis; Canada | Reeves [121] Moon [122] |
Asparagus patersonii | Asparagaceae | 0.25%/12.3 | Ex situ; plant analysis; USA | Reeves [121] Moon [122] |
Asparagus pectinatus | Asparagaceae | 0.51% | Ex situ; plant analysis; USA | Reeves [121] |
Asparagus racemosus | Asparagaceae | 1.5% | Ex situ; plant analysis; USA | Reeves [121] |
Atriplex canescens | Amaranthaceae | 0.17%/34.75 | Ex situ; plant and soil analysis; Arid climate; Algeria | Nadaf et al. [123]; Nedjimi [124] |
Castilleja chromosa | Orobanchaceae | 0.18% | Ex situ; plant analysis; USA | Reeves [121]; |
Cardamine violifolia | Brassicaceae | 0.48% | Ex situ; plant analysis; Korea and Yutangba, China | Ma et al. [125] Huang et al. [126] |
Lecythis ollaria | Lecythidaceae | 1.8% | Ex situ leaf analysis; Venezuela | Reeves [121] |
Machaeranthera gabriulscula | Asteraceae | 0.18% | Ex situ leaf analysis; USA | Reeves [121] |
Machaeranthera parryi | Asteraceae | 0.53% | Ex situ; leaf analysis; USA | Reeves [121] |
Machaeranthera ramosa | Asteraceae | 0.13% | Ex situ; leaf analysis; USA | Reeves [121] |
Machaeranthera venusta | Asteraceae | 0.34% | Ex situ; leaf analysis; Colorado, USA | Reeves [121] |
Neptunia amplexicaulis | Fabaceae | 0.11%/43.3 | Pot experiment; soil spiked with 0, 5, and 30 mg Se kg−1 (as Na2SeO4 or CaSeO3); Queensland, Australia | O’Donohue et al. [127]; Irish et al. [128] |
Stanleya bipinnata | Brassicaceae | 0.23% | Ex situ; leaf analysis; USA | Reeves [121] |
Stanleya pinnata | Brassicaceae | 0.11% | Climate controlled experiment; Hoagland solution applied as fertilizer; plants exposed to 0–80 μΜ N2SeO4; Colorado, USA | Harris et al. [129] |
Element | Natural Occurrence in the Earth’s Crust (mg kg−1) | Economically Viable Plant Metal Concentration (mg kg−1) | Economic Proposed Concentration in Biomass (mg kg−1) | Reference |
---|---|---|---|---|
Au | 0.0040 | 6 | 0.06–0.6 | Lee et al. [176] |
Ag | 0.0750 | 1000 | 10–100 | Lee et al. [176] |
Pd | 0.0150 | 5–15 | 0.05–1.5 | Lee et al. [176] |
Pt | 0.0050 | 4 | 0.04–0.4 | Dinh et al. [15] |
Rh | 0.0010 | 5–15 | 0.05–1.5 | Dinh et al. [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikis, C.; Thalassinos, G.; Antoniadis, V. Soil Phytomining: Recent Developments—A Review. Soil Syst. 2024, 8, 8. https://doi.org/10.3390/soilsystems8010008
Kikis C, Thalassinos G, Antoniadis V. Soil Phytomining: Recent Developments—A Review. Soil Systems. 2024; 8(1):8. https://doi.org/10.3390/soilsystems8010008
Chicago/Turabian StyleKikis, Christos, Georgios Thalassinos, and Vasileios Antoniadis. 2024. "Soil Phytomining: Recent Developments—A Review" Soil Systems 8, no. 1: 8. https://doi.org/10.3390/soilsystems8010008
APA StyleKikis, C., Thalassinos, G., & Antoniadis, V. (2024). Soil Phytomining: Recent Developments—A Review. Soil Systems, 8(1), 8. https://doi.org/10.3390/soilsystems8010008