Photocatalytic Degradation of Organic Pollutant in Wastewater

A special issue of Separations (ISSN 2297-8739). This special issue belongs to the section "Environmental Separations".

Deadline for manuscript submissions: 10 July 2025 | Viewed by 144

Special Issue Editor


E-Mail Website
Guest Editor
College of Forestry, Northeast Forestry University, Harbin 150040, China
Interests: advanced oxidation technology

Special Issue Information

Dear Colleagues,

Photocatalytic technology stands out as a straightforward, energy-efficient, safe, and eco-friendly approach for environmental purification. However, it grapples with challenges including low photon utilization, inadequate photoresponse, limited active sites, rapid electron-hole pair recombination, and a propensity for aggregation. To conquer these issues, researchers have engineered innovative photocatalysts, such as metal–organic frameworks, two-dimensional materials, and composite semiconductors, which boast enhanced light absorption efficiency and an expanded light response spectrum. Additionally, techniques like doping, constructing heterostructures, and surface modification can improve the separation efficiency of photogenerated electron-hole pairs, thereby reducing recombination rates and enhancing photocatalytic activity.

Photocatalysts are widely utilized for the degradation of pollutants in water, air, and soil. Among these, persistent organic pollutants, volatile organic compounds, and antibiotics in the environment are particularly of interest to researchers. Simultaneously, researchers are actively exploring the synergistic effects of photocatalytic technology with other technologies, such as electrocatalysis and biocatalysis, to achieve the more efficient degradation of pollutants. As research deepens, the application prospects of photocatalytic technology in the field of environmental remediation are expected to become even broader.

Therefore, this Special Issue aims to consolidate and disseminate knowledge in the field. We invite you to contribute your research article, communication, or review related to the photocatalytic degradation of pollutants.

Dr. Ming Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Separations is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalysis
  • functional materials
  • organic pollutants
  • wastewater
  • degradation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3847 KiB  
Article
Construction of Z-Scheme Heterojunction BiOCl/Bi2WO6 for Visible-Light Photocatalytic Degradation of Tetracycline Hydrochloride
by Hetian Zhang, Zengying Zhu, Yajie Huang, Jiaxing Yu and Ming Li
Separations 2025, 12(5), 111; https://doi.org/10.3390/separations12050111 - 28 Apr 2025
Viewed by 111
Abstract
Tetracycline hydrochloride pollution poses a serious environmental threat; however, it is difficult to deal with by conventional methods. In this study, the Z-scheme BiOCl/Bi2WO6 composite was hydrothermally synthesized and evaluated for its ability to decompose tetracycline hydrochloride under visible light. [...] Read more.
Tetracycline hydrochloride pollution poses a serious environmental threat; however, it is difficult to deal with by conventional methods. In this study, the Z-scheme BiOCl/Bi2WO6 composite was hydrothermally synthesized and evaluated for its ability to decompose tetracycline hydrochloride under visible light. The composite material was systematically characterized by XRD, SEM, TEM/HRTEM, XPS, FTIR, BET, PL, UV-Vis DRS, and EPR to analyze its structure, morphology, and optical/electrochemical properties. Characterization revealed that the composite featured a flower-ball structure with broader light absorption and higher solar energy efficiency. A narrow bandgap further facilitated charge separation, boosting photocatalytic performance. Among the synthesized materials, the 20% BiOCl/Bi2WO6 composite exhibited the best performance, removing 94% of tetracycline hydrochloride in 60 min, which was 5.2 times and 1.4 times higher than pure BiOCl and Bi2WO6, respectively. The rate constant was 10.8 times and 2.5 times higher than that of pure BiOCl and Bi2WO6. After five cycles, it maintained the 88.7% removal rate, with X-ray diffraction analysis confirming its structural stability and well mechanical properties. Electron paramagnetic resonance and radical scavenging experiments identified photogenerated holes (h+) and superoxide radicals (·O2) as the primary active species. This work highlights the fact that the prepared Z-scheme BiOCl/Bi2WO6 composite exhibited excellent photocatalytic performance in the degradation of tetracycline hydrochloride, demonstrating promising potential for practical applications. Full article
(This article belongs to the Special Issue Photocatalytic Degradation of Organic Pollutant in Wastewater)
Show Figures

Graphical abstract

Back to TopTop