Non-Life Insurance Mathematics beyond Risk Theory: Pricing and Claims Reserving

A special issue of Risks (ISSN 2227-9091).

Deadline for manuscript submissions: closed (29 February 2016) | Viewed by 73333

Special Issue Editor


E-Mail Website
Guest Editor
Department of Econometrics, Riskcenter-IREA Universitat de Barcelona Av. Diagonal, 690 08034 Barcelona, Spain
Interests: risk; insurance; actuarial statistics; long-term care insurance; experience rating; statistical methods for insurance and finance, automobile fraud detection, quantitative methods for risk management; longevity; pension-saving investment; risk analytics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Non-life policies are one of the core operations of general insurance companies. In this Special Issue we seek contributions on recent developments for pricing and claims reserving. These are two critical fields in the financial accounts of an insurer. Pricing is about evaluating the risk of what is being covered and selling the insurance contract to a customer. Claims reserving studies payments of claims, a process which can be long and have uncertain outcomes. Claims settlement is slow because of lengthy judicial developments. Moreover, there is an intrinsic difficulty to predict the consequences of losses and, in particular, bodily injuries to victims. Risk theory has influenced current methods, and developments in mathematical statistics have also affected the way we understand premium calculations and reserves today. However, further powerful methods for data analyses and modeling could produce substantial advances. It could also be considered that technological advances, such as satellite navigation, usage based insurance or even automated driving have an influence on motor insurance. Submissions on any of these interesting developments would be welcome.

Prof. Dr. Montserrat Guillén
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Risks is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • premium rating
  • loss severity
  • personal lines
  • commercial lines
  • INBR
  • chain ladder
  • insurance marketing
  • retention lapse
  • loss ratio
  • solvency

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

2741 KiB  
Article
Understanding Reporting Delay in General Insurance
by Richard J. Verrall and Mario V. Wüthrich
Risks 2016, 4(3), 25; https://doi.org/10.3390/risks4030025 - 8 Jul 2016
Cited by 24 | Viewed by 5849
Abstract
The aim of this paper is to understand and to model claims arrival and reporting delay in general insurance. We calibrate two real individual claims data sets to the statistical model of Jewell and Norberg. One data set considers property insurance and the [...] Read more.
The aim of this paper is to understand and to model claims arrival and reporting delay in general insurance. We calibrate two real individual claims data sets to the statistical model of Jewell and Norberg. One data set considers property insurance and the other one casualty insurance. For our analysis we slightly relax the model assumptions of Jewell allowing for non-stationarity so that the model is able to cope with trends and with seasonal patterns. The performance of our individual claims data prediction is compared to the prediction based on aggregate data using the Poisson chain-ladder method. Full article
Show Figures

Graphical abstract

950 KiB  
Article
Ruin Probabilities with Dependence on the Number of Claims within a Fixed Time Window
by Corina Constantinescu, Suhang Dai, Weihong Ni and Zbigniew Palmowski
Risks 2016, 4(2), 17; https://doi.org/10.3390/risks4020017 - 15 Jun 2016
Cited by 13 | Viewed by 5341
Abstract
We analyse the ruin probabilities for a renewal insurance risk process with inter-arrival times depending on the claims that arrive within a fixed (past) time window. This dependence could be explained through a regenerative structure. The main inspiration of the model comes from [...] Read more.
We analyse the ruin probabilities for a renewal insurance risk process with inter-arrival times depending on the claims that arrive within a fixed (past) time window. This dependence could be explained through a regenerative structure. The main inspiration of the model comes from the bonus-malus (BM) feature of pricing car insurance. We discuss first the asymptotic results of ruin probabilities for different regimes of claim distributions. For numerical results, we recognise an embedded Markov additive process, and via an appropriate change of measure, ruin probabilities could be computed to a closed-form formulae. Additionally, we employ the importance sampling simulations to derive ruin probabilities, which further permit an in-depth analysis of a few concrete cases. Full article
Show Figures

Graphical abstract

1237 KiB  
Article
Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments
by Gareth W. Peters, Wilson Ye Chen and Richard H. Gerlach
Risks 2016, 4(2), 14; https://doi.org/10.3390/risks4020014 - 20 May 2016
Cited by 21 | Viewed by 5216
Abstract
This paper discusses different classes of loss models in non-life insurance settings. It then overviews the class of Tukey transform loss models that have not yet been widely considered in non-life insurance modelling, but offer opportunities to produce flexible skewness and kurtosis features [...] Read more.
This paper discusses different classes of loss models in non-life insurance settings. It then overviews the class of Tukey transform loss models that have not yet been widely considered in non-life insurance modelling, but offer opportunities to produce flexible skewness and kurtosis features often required in loss modelling. In addition, these loss models admit explicit quantile specifications which make them directly relevant for quantile based risk measure calculations. We detail various parameterisations and sub-families of the Tukey transform based models, such as the g-and-h, g-and-k and g-and-j models, including their properties of relevance to loss modelling. One of the challenges that are amenable to practitioners when fitting such models is to perform robust estimation of the model parameters. In this paper we develop a novel, efficient, and robust procedure for estimating the parameters of this family of Tukey transform models, based on L-moments. It is shown to be more efficient than the current state of the art estimation methods for such families of loss models while being simple to implement for practical purposes. Full article
Show Figures

Figure 1

438 KiB  
Article
Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)
by Arthur Charpentier and Mathieu Pigeon
Risks 2016, 4(2), 12; https://doi.org/10.3390/risks4020012 - 14 May 2016
Cited by 11 | Viewed by 5506
Abstract
Traditionally, actuaries have used run-off triangles to estimate reserve (“macro” models, on aggregated data). However, it is possible to model payments related to individual claims. If those models provide similar estimations, we investigate uncertainty related to reserves with “macro” and “micro” models. We [...] Read more.
Traditionally, actuaries have used run-off triangles to estimate reserve (“macro” models, on aggregated data). However, it is possible to model payments related to individual claims. If those models provide similar estimations, we investigate uncertainty related to reserves with “macro” and “micro” models. We study theoretical properties of econometric models (Gaussian, Poisson and quasi-Poisson) on individual data, and clustered data. Finally, applications in claims reserving are considered. Full article
Show Figures

Graphical abstract

815 KiB  
Article
Telematics and Gender Discrimination: Some Usage-Based Evidence on Whether Men’s Risk of Accidents Differs from Women’s
by Mercedes Ayuso, Montserrat Guillen and Ana María Pérez-Marín
Risks 2016, 4(2), 10; https://doi.org/10.3390/risks4020010 - 8 Apr 2016
Cited by 52 | Viewed by 8144
Abstract
Pay-as-you-drive (PAYD), or usage-based automobile insurance (UBI), is a policy agreement tied to vehicle usage. In this paper we analyze the effect of the distance traveled on the risk of accidents among young drivers with a PAYD policy. We use regression [...] Read more.
Pay-as-you-drive (PAYD), or usage-based automobile insurance (UBI), is a policy agreement tied to vehicle usage. In this paper we analyze the effect of the distance traveled on the risk of accidents among young drivers with a PAYD policy. We use regression models for survival data to estimate how long it takes them to have their first accident at fault during the coverage period. Our empirical application with real data is presented and shows that gender differences are mainly attributable to the intensity of use. Indeed, although gender has a significant effect in explaining the time to the first crash, this effect is no longer significant when the average distance traveled per day is introduced in the model. This suggests that gender differences in the risk of accidents are, to a large extent, attributable to the fact that men drive more often than women. Estimates of the time to the first accident for different driver risk types are presented. We conclude that no gender discrimination is necessary if telematics provides enough information on driving habits. Full article
Show Figures

Graphical abstract

251 KiB  
Article
Analysis of Insurance Claim Settlement Process with Markovian Arrival Processes
by Jiandong Ren
Risks 2016, 4(1), 6; https://doi.org/10.3390/risks4010006 - 11 Mar 2016
Cited by 3 | Viewed by 6070
Abstract
This paper proposes a model for the claim occurrence, reporting, and handling process of insurance companies. It is assumed that insurance claims occur according to a Markovian arrival process. An incurred claim goes through some stages of a claim reporting and handling process, [...] Read more.
This paper proposes a model for the claim occurrence, reporting, and handling process of insurance companies. It is assumed that insurance claims occur according to a Markovian arrival process. An incurred claim goes through some stages of a claim reporting and handling process, such as Incurred But Not Reported (IBNR), Reported But Not Settled (RBNS) and Settled (S). We derive formulas for the joint distribution and the joint moments for the amount of INBR, RBNS and Settled claims. This model generalizes previous ones in the literature, which generally assume Poisson claim arrivals. Due to the flexibility of the Markovian arrival process, the model can be used to evaluate how the claim occurring, reporting, and handling mechanisms may affect the volatilities of the amount of IBNR, RBNS and Settled claims, and the interdependencies among them. Full article
Show Figures

Figure 1

1223 KiB  
Article
Multivariate Frequency-Severity Regression Models in Insurance
by Edward W. Frees, Gee Lee and Lu Yang
Risks 2016, 4(1), 4; https://doi.org/10.3390/risks4010004 - 25 Feb 2016
Cited by 85 | Viewed by 14833
Abstract
In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to [...] Read more.
In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i) property; (ii) motor vehicle; and (iii) contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line. Full article
Show Figures

Figure 1

799 KiB  
Article
On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy
by Eric C.K. Cheung, Haibo Liu and Jae-Kyung Woo
Risks 2015, 3(4), 491-514; https://doi.org/10.3390/risks3040491 - 10 Nov 2015
Cited by 11 | Viewed by 5377
Abstract
In the compound Poisson insurance risk model under a dividend barrier strategy, this paper aims to analyze jointly the aggregate discounted claim amounts until ruin and the total discounted dividends until ruin, which represent the insurer’s payments to its policyholders and shareholders, respectively. [...] Read more.
In the compound Poisson insurance risk model under a dividend barrier strategy, this paper aims to analyze jointly the aggregate discounted claim amounts until ruin and the total discounted dividends until ruin, which represent the insurer’s payments to its policyholders and shareholders, respectively. To this end, we introduce a Gerber–Shiu-type function, which further incorporates the higher moments of these two quantities. This not only unifies the individual study of various ruin-related quantities, but also allows for new measures concerning covariances to be calculated. The integro-differential equation satisfied by the generalized Gerber–Shiu function and the boundary condition are derived. In particular, when the claim severity is distributed as a combination of exponentials, explicit expressions for this Gerber–Shiu function in some special cases are given. Numerical examples involving the covariances between any two of (i) the aggregate discounted claims until ruin, (ii) the discounted dividend payments until ruin and (iii) the time of ruin are presented along with some interpretations. Full article
Show Figures

Figure 1

479 KiB  
Article
Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints
by Massimiliano Kaucic and Roberto Daris
Risks 2015, 3(3), 390-419; https://doi.org/10.3390/risks3030390 - 15 Sep 2015
Cited by 6 | Viewed by 7026
Abstract
In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for [...] Read more.
In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis. Full article
Show Figures

Figure 1

425 KiB  
Article
Valuation of Index-Linked Cash Flows in a Heath–Jarrow–Morton Framework
by Jonas Alm and Filip Lindskog
Risks 2015, 3(3), 338-364; https://doi.org/10.3390/risks3030338 - 10 Sep 2015
Viewed by 5952
Abstract
In this paper, we study the valuation of stochastic cash flows that exhibit dependence on interest rates. We focus on insurance liability cash flows linked to an index, such as a consumer price index or wage index, where changes in the index value [...] Read more.
In this paper, we study the valuation of stochastic cash flows that exhibit dependence on interest rates. We focus on insurance liability cash flows linked to an index, such as a consumer price index or wage index, where changes in the index value can be partially understood in terms of changes in the term structure of interest rates. Insurance liability cash flows that are not explicitly linked to an index may still be valued in our framework by interpreting index returns as so-called claims inflation, i.e., an increase in claims cost per sold insurance contract. We focus primarily on the case when a deep and liquid market for index-linked contracts is absent or when the market price data are unreliable. Firstly, we present an approach for assigning a monetary value to a stochastic cash flow that does not require full knowledge of the joint dynamics of the cash flow and the term structure of interest rates. Secondly, we investigate in detail model selection, estimation and validation in a Heath–Jarrow–Morton framework. Finally, we analyze the effects of model uncertainty on the valuation of the cash flows and how forecasts of cash flows and interest rates translate into model parameters and affect the valuation. Full article
Show Figures

Figure 1

Back to TopTop