Special Issue "European Remote Sensing-New Solutions for Science and Practice"

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editors

Dr. Bogdan Zagajewski
Website
Guest Editor
Department of Geoinformatics, Cartography and Remote Sensing, Faculty of Geography and Regional Studies, Warsaw University, Poland, ul. Krakowskie Przedmieście 30, 00-927 Warsaw, Poland
Interests: imaging spectroscopy; classification; algorithms; vegetation; natural and semi-natural ecosystems; high-mountain and Arctic monitoring; land cover mapping
Special Issues and Collections in MDPI journals
Dr. Klaus Komp
Website
Guest Editor
European Association of Remote Sensing Laboratories
Interests: remote sensing

Special Issue Information

Dear Colleagues,

The Special Issue is a result of the 40th EARSeL symposium and the accompanying thematic workshops in Warsaw, in 2021. The symposia are annual meetings integrating scientists and practitioners. European Association of Remote Sensing Laboratories invites everybody, who wants to present the newest ideas, solutions and achievements in the fields of: Temporal analysis of image data, cultural and natural heritage, coastal zones, developing countries, education and training, forest fires, forestry, geological applications, imaging spectroscopy, land ice and snow, land use and land cover, radar remote sensing, thermal remote sensing, urban remote sensing, 3D remote sensing, and UAS.

We invite all prospective authors to share their work.

Dr. Bogdan Zagajewski
Dr. Klaus Komp
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • EARSeL
  • Forestry
  • Land Use & Land Cover
  • Geology
  • Heritage
  • Training & Education
  • 3d & Urban Environment
  • Algorithms
  • New Sensors
  • New Remote Sensing Data

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle
GHS-POP Accuracy Assessment: Poland and Portugal Case Study
Remote Sens. 2020, 12(7), 1105; https://doi.org/10.3390/rs12071105 - 31 Mar 2020
Abstract
The Global Human Settlement Population Grid (GHS-POP) the latest released global gridded population dataset based on remotely sensed data and developed by the EU Joint Research Centre, depicts the distribution and density of the total population as the number of people per grid [...] Read more.
The Global Human Settlement Population Grid (GHS-POP) the latest released global gridded population dataset based on remotely sensed data and developed by the EU Joint Research Centre, depicts the distribution and density of the total population as the number of people per grid cell. This study aims to assess the GHS-POP data accuracy based on root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) and the correlation coefficient. The study was conducted for Poland and Portugal, countries characterized by different population distribution as well as two spatial resolutions of 250 m and 1 km on the GHS-POP. The main findings show that as the size of administrative zones decreases (from NUTS (Nomenclature of Territorial Units for Statistics) to LAU (local administrative unit)) and the size of the GHS-POP increases, the difference between the population counts reported by the European Statistical Office and estimated by the GHS-POP algorithm becomes larger. At the national level, MAPE ranges from 1.8% to 4.5% for the 250 m and 1 km resolutions of GHS-POP data in Portugal and 1.5% to 1.6%, respectively in Poland. At the local level, however, the error rates range from 4.5% to 5.8% in Poland, for 250 m and 1 km, and 5.7% to 11.6% in Portugal, respectively. Moreover, the results show that for densely populated regions the GHS-POP underestimates the population number, while for thinly populated regions it overestimates. The conclusions of this study are expected to serve as a quality reference for potential users and producers of population density datasets. Full article
(This article belongs to the Special Issue European Remote Sensing-New Solutions for Science and Practice)
Show Figures

Figure 1

Open AccessArticle
Asbestos—Cement Roofing Identification Using Remote Sensing and Convolutional Neural Networks (CNNs)
Remote Sens. 2020, 12(3), 408; https://doi.org/10.3390/rs12030408 - 28 Jan 2020
Abstract
Due to the pathogenic nature of asbestos, a statutory ban on asbestos-containing products has been in place in Poland since 1997. In order to protect human health and the environment, it is crucial to estimate the quantity of asbestos–cement products in use. It [...] Read more.
Due to the pathogenic nature of asbestos, a statutory ban on asbestos-containing products has been in place in Poland since 1997. In order to protect human health and the environment, it is crucial to estimate the quantity of asbestos–cement products in use. It has been evaluated that about 90% of them are roof coverings. Different methods are used to estimate the amount of asbestos–cement products, such as the use of indicators, field inventory, remote sensing data, and multi- and hyperspectral images; the latter are used for relatively small areas. Other methods are sought for the reliable estimation of the quantity of asbestos-containing products, as well as their spatial distribution. The objective of this paper is to present the use of convolutional neural networks for the identification of asbestos–cement roofing on aerial photographs in natural color (RGB) and color infrared (CIR) compositions. The study was conducted for the Chęciny commune. Aerial photographs, each with the spatial resolution of 25 cm in RGB and CIR compositions, were used, and field studies were conducted to verify data and to develop a database for Convolutional Neural Networks (CNNs) training. Network training was carried out using the TensorFlow and R-Keras libraries in the R programming environment. The classification was carried out using a convolutional neural network consisting of two convolutional blocks, a spatial dropout layer, and two blocks of fully connected perceptrons. Asbestos–cement roofing products were classified with the producer’s accuracy of 89% and overall accuracy of 87% and 89%, depending on the image composition used. Attempts have been made at the identification of asbestos–cement roofing. They focus primarily on the use of hyperspectral data and multispectral imagery. The following classification algorithms were usually employed: Spectral Angle Mapper, Support Vector Machine, object classification, Spectral Feature Fitting, and decision trees. Previous studies undertaken by other researchers showed that low spectral resolution only allowed for a rough classification of roofing materials. The use of one coherent method would allow data comparison between regions. Determining the amount of asbestos–cement products in use is important for assessing environmental exposure to asbestos fibres, determining patterns of disease, and ultimately modelling potential solutions to counteract threats. Full article
(This article belongs to the Special Issue European Remote Sensing-New Solutions for Science and Practice)
Show Figures

Figure 1

Open AccessArticle
Multitemporal Hyperspectral Data Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats
Remote Sens. 2019, 11(19), 2264; https://doi.org/10.3390/rs11192264 - 28 Sep 2019
Cited by 7
Abstract
Accurately identifying Natura 2000 habitat areas with the support of remote sensing techniques is becoming increasingly feasible. Various data types and methods are used for this purpose, and the fusion of data from various sensors and temporal periods (terms) within the phenological cycle [...] Read more.
Accurately identifying Natura 2000 habitat areas with the support of remote sensing techniques is becoming increasingly feasible. Various data types and methods are used for this purpose, and the fusion of data from various sensors and temporal periods (terms) within the phenological cycle allows natural habitats to be precisely identified. This research was aimed at selecting optimal datasets to classify three grassland Natura 2000 habitats (codes 6210, 6410 and 6510) in the Ostoja Nidziańska Natura 2000 site in Poland based on hyperspectral imagery and botanical on-ground reference data acquired in three terms during one vegetative period in 2017 (May, July and September), as well as a digital terrain model (DTM) obtained by airborne laser scanning (ALS). The classifications were carried out using a random forest (RF) algorithm on minimum noise fraction (MNF) transform output bands obtained for single terms, as well as data fusion combining the topographic indices (TOPO) calculated from the DTM, multitemporal hyperspectral data, or a combination of the two. The classification accuracy statistics were analysed in various combinations based on the datasets and their terms of acquisition. Topographic indices improved the classification accuracy of habitats 6210 and 6410, with the greatest impact noted in increased classification accuracy of xerothermic grasslands. The best terms for identifying specific habitats were autumn for 6510 and summer for 6210 and 6410, while the best results overall were obtained by combining data from all terms. The highest obtained values of the F1 coefficient were 84.5% for habitat 6210, 83.2% for habitat 6410, and 69.9% for habitat 6510. Comparing the data fusion results for habitats 6210 and 6410, greater accuracy was obtained by adding topographic indices to multitemporal hyperspectral data, while for habitat 6510, greater accuracy was obtained by fusing only multitemporal hyperspectral data. Full article
(This article belongs to the Special Issue European Remote Sensing-New Solutions for Science and Practice)
Show Figures

Graphical abstract

Other

Jump to: Research

Open AccessLetter
Identification of Tyre and Plastic Waste from Combined Copernicus Sentinel-1 and -2 Data
Remote Sens. 2020, 12(17), 2824; https://doi.org/10.3390/rs12172824 - 31 Aug 2020
Abstract
As a result of tightened waste regulation across Europe, reports of waste crime have been on the rise. Significant stockpiles of tyres and plastic materials have been identified as a threat to both human and environmental health, leading to water and livestock contamination, [...] Read more.
As a result of tightened waste regulation across Europe, reports of waste crime have been on the rise. Significant stockpiles of tyres and plastic materials have been identified as a threat to both human and environmental health, leading to water and livestock contamination, providing substantial fuel for fires, and cultivating a variety of disease vectors. Traditional methods of identifying illegal stockpiles usually involve laborious field surveys, which are unsuitable for national scale management. Remotely-sensed investigations to tackle waste have been less explored due to the spectrally variable and complex nature of tyres and plastics, as well as their similarity to other land covers such as water and shadow. Therefore, the overall objective of this study was to develop an accurate classification method for both tyre and plastic waste to provide a viable platform for repeatable, cost-effective, and large-scale monitoring. An augmented land cover classification is presented that combines Copernicus Sentinel-2 optical imagery with thematic indices and Copernicus Sentinel-1 microwave data, and two random forests land cover classification algorithms were trained for the detection of tyres and plastics across Scotland. Testing of the method identified 211 confirmed tyre and plastic stockpiles, with overall classification accuracies calculated above 90%. Full article
(This article belongs to the Special Issue European Remote Sensing-New Solutions for Science and Practice)
Show Figures

Graphical abstract

Back to TopTop