- Article
Temperature and Fluence Dependence Investigation of the Defect Evolution Characteristics of GaN Single Crystals Under Radiation with Ion Beam-Induced Luminescence
- Xue Peng,
- Wenli Jiang and
- Ruotong Chang
- + 4 authors
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or single-temperature luminescence—we in situ tracked dynamic luminescence changes throughout irradiation, directly capturing the real-time responses of luminescent centers to coupled temperature-dose variations—a rare capability in prior work. To clarify how irradiation and temperature affect the luminescent centers of GaN, we integrated density functional theory (DFT) calculations with literature analysis, then resolved the yellow luminescence band into three emission centers via Gaussian deconvolution: 1.78 eV associated with C/O impurities, 1.94 eV linked to VGa, and 2.2 eV corresponding to CN defects. Using a single-exponential decay model, we further quantified the temperature- and dose-dependent decay rates of these centers under dual-variable temperature and dose conditions. Experimental results show that low-temperature irradiation such as at 100 K suppresses the migration and recombination of VGa/CN point defects, significantly enhancing the radiation tolerance of the 1.94 eV and 2.2 eV emission centers; meanwhile, it reduces non-radiative recombination center density, stabilizing free excitons and donor-bound excitons, thereby improving near-band-edge emission center resistance. Notably, the 1.94 eV emission center linked to gallium vacancies exhibits superior cryogenic radiation tolerance due to slower defect migration and more stable free exciton/donor-bound exciton states. Collectively, these findings reveal a synergistic regulation mechanism of temperature and radiation fluence on defect stability, addressing a key gap in static studies, providing a basis for understanding degradation mechanisms of gallium nitride-based devices under actual operating conditions (coexisting temperature fluctuations and continuous radiation), and offering theoretical/experimental support for optimizing radiation-hardened gallium nitride devices for extreme environments such as space or nuclear applications.
4 January 2026







