Special Issue "Polymer Based Electronic Devices and Sensors"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Physics and Theory".

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editor

Prof. Dr. Ming-Chung Wu
E-Mail Website
Guest Editor
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
Interests: nanomaterials synthesis; photocatalytic materials; photocatalysis applications; perovskite solar cells; VOC sensing materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is motivated by the growing interest in the design, fabrication, and application of polymer-based electronic devices and sensors. In recent years, a variety of polymer-based compounds have been developed. Their novel chemical and physical properties extend their application in different fields. As the external stimuli, including pH, light radiation, heat, etc., are further applied on polymer-based materials, they may have a reversibly or irreversibly change in their physical and chemical properties.

This Special Issue on “Polymer-Based Electronic Devices and Sensors” will collect new original research and review papers, with special emphasis on the improved properties, innovative fabrication processes, and novel applications of functional polymer composite. We warmly invite researchers in this field to submit relevant manuscripts to this Special Issue of the journal Polymers.

Prof. Dr. Ming-Chung Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Conjugated/semiconducting polymers 
  • Conducting polymers 
  • Synthesis of conducting polymers 
  • Structure of conducting polymers 
  • Polymer electrolytes 
  • Polymer electronic devices 
  • Polymer solar cells 
  • Sensors

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Communication
Laser Diode Pumped Polymer Lasers with Tunable Emission Based on Microfluidic Channels
Polymers 2021, 13(20), 3511; https://doi.org/10.3390/polym13203511 - 13 Oct 2021
Viewed by 318
Abstract
Tunable whispering-gallery-mode (WGM) lasers have been paid lots of attention for their potential applications in the photonic field. Here, a tunable polymer WGM laser based on laser diode pumping is realized with a threshold of 0.43 MW/cm2 per pulse. The WGM laser [...] Read more.
Tunable whispering-gallery-mode (WGM) lasers have been paid lots of attention for their potential applications in the photonic field. Here, a tunable polymer WGM laser based on laser diode pumping is realized with a threshold of 0.43 MW/cm2 per pulse. The WGM laser is realized by a microfluidic microcavity, which consists of a quartz capillary and gain materials. The laser performance keeps stable for a long time (3.5 h), pumped by a 50-ns 50 Hz laser diode with a pumping peak power density of 1.08 MW/cm2 per pulse. The lasing wavelength can be tuned over 15 nm by changing the gain material concentration from 3.5 mg/mL to 12.5 mg/mL in the microfluidic channel. Moreover, the lasing mode can be switched between transverse magnetic (TM) and transverse electric (TE) modes by adjusting the pump polarization. These results provide the basis for designing nanophotonic devices with laser diode pumping. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Graphical abstract

Article
Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures
Polymers 2021, 13(19), 3272; https://doi.org/10.3390/polym13193272 - 25 Sep 2021
Viewed by 604
Abstract
Soft biomimetic electronic devices primarily comprise an electronic skin (e-skin) capable of implementing various wearable/implantable applications such as soft human–machine interfaces, epidermal healthcare systems, and neuroprosthetics owing to its high mechanical flexibility, tissue conformability, and multifunctionality. The conformal contact of the e-skin with [...] Read more.
Soft biomimetic electronic devices primarily comprise an electronic skin (e-skin) capable of implementing various wearable/implantable applications such as soft human–machine interfaces, epidermal healthcare systems, and neuroprosthetics owing to its high mechanical flexibility, tissue conformability, and multifunctionality. The conformal contact of the e-skin with living tissues enables more precise analyses of physiological signals, even in the long term, as compared to rigid electronic devices. In this regard, e-skin can be considered as a promising formfactor for developing highly sensitive and transparent pressure sensors. Specifically, to minimize the modulus mismatch at the biotic–abiotic interface, transparent-conductive hydrogels have been used as electrodes with exceptional pressing durability. However, critical issues such as dehydration and low compatibility with elastomers remain a challenge. In this paper, we propose a skin-like transparent polymer-hydrogel hybrid pressure sensor (HPS) with microstructures based on the polyacrylamide/sodium-alginate hydrogel and p-PVDF-HFP-DBP polymer. The encapsulated HPS achieves conformal contact with skin due to its intrinsically stretchable, highly transparent, widely sensitive, and anti-dehydrative properties. We believe that the HPS is a promising candidate for a robust transparent epidermal stretchable-skin device. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

Article
Design of Promising Heptacoordinated Organotin (IV) Complexes-PEDOT: PSS-Based Composite for New-Generation Optoelectronic Devices Applications
Polymers 2021, 13(7), 1023; https://doi.org/10.3390/polym13071023 - 25 Mar 2021
Cited by 3 | Viewed by 756
Abstract
The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to [...] Read more.
The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

Article
Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes
Polymers 2021, 13(6), 895; https://doi.org/10.3390/polym13060895 - 14 Mar 2021
Cited by 1 | Viewed by 704
Abstract
Whereas the major potential of the development of lithium-based cells is commonly attributed to the use of solid polymer electrolytes (SPE) to replace liquid ones, the possibilities of the improvement of the applicability of the fuel cell is often attributed to the novel [...] Read more.
Whereas the major potential of the development of lithium-based cells is commonly attributed to the use of solid polymer electrolytes (SPE) to replace liquid ones, the possibilities of the improvement of the applicability of the fuel cell is often attributed to the novel electrolytic materials belonging to various structural families. In both cases, the transport properties of the electrolytes significantly affect the operational parameters of the galvanic and fuel cells incorporating them. Amongst them, the transference number (TN) of the electrochemically active species (usually cations) is, on the one hand, one of the most significant descriptors of the resulting cell operational efficiency while on the other, despite many years of investigation, it remains the worst definable and determinable material parameter. The paper delivers not only an extensive review of the development of the TN determination methodology but as well tries to show the physicochemical nature of the discrepancies observed between the values determined using various approaches for the same systems of interest. The provided critical review is supported by some original experimental data gathered for composite polymeric systems incorporating both inorganic and organic dispersed phases. It as well explains the physical sense of the negative transference number values resulting from some more elaborated approaches for highly associated systems. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

Review

Jump to: Research

Review
Contribution of Polymers to Electronic Memory Devices and Applications
Polymers 2021, 13(21), 3774; https://doi.org/10.3390/polym13213774 - 31 Oct 2021
Viewed by 343
Abstract
Electronic memory devices, such as memristors, charge trap memory, and floating-gate memory, have been developed over the last decade. The use of polymers in electronic memory devices enables new opportunities, including easy-to-fabricate processes, mechanical flexibility, and neuromorphic applications. This review revisits recent efforts [...] Read more.
Electronic memory devices, such as memristors, charge trap memory, and floating-gate memory, have been developed over the last decade. The use of polymers in electronic memory devices enables new opportunities, including easy-to-fabricate processes, mechanical flexibility, and neuromorphic applications. This review revisits recent efforts on polymer-based electronic memory developments. The versatile contributions of polymers for emerging memory devices are classified, providing a timely overview of such unconventional functionalities with a strong emphasis on the merits of polymer utilization. Furthermore, this review discusses the opportunities and challenges of polymer-based memory devices with respect to their device performance and stability for practical applications. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Graphical abstract

Review
Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review
Polymers 2021, 13(14), 2276; https://doi.org/10.3390/polym13142276 - 12 Jul 2021
Viewed by 714
Abstract
The paper presents a comprehensive review of mechanical energy harvesters and microphone sensors for totally implanted hearing systems. The studies on hearing mechanisms, hearing losses and hearing solutions are first introduced to bring to light the necessity of creating and integrating the in [...] Read more.
The paper presents a comprehensive review of mechanical energy harvesters and microphone sensors for totally implanted hearing systems. The studies on hearing mechanisms, hearing losses and hearing solutions are first introduced to bring to light the necessity of creating and integrating the in vivo energy harvester and implantable microphone into a single chip. The in vivo energy harvester can continuously harness energy from the biomechanical motion of the internal organs. The implantable microphone executes mechanoelectrical transduction, and an array of such structures can filter sound frequency directly without an analogue-to-digital converter. The revision of the available transduction mechanisms, device configuration structures and piezoelectric material characteristics reveals the advantage of adopting the polymer-based piezoelectric transducers. A dual function of sensing the sound signal and simultaneously harvesting vibration energy to power up its system can be attained from a single transducer. Advanced process technology incorporates polymers into piezoelectric materials, initiating the invention of a self-powered and flexible transducer that is compatible with the human body, magnetic resonance imaging system (MRI) and the standard complementary metal-oxide-semiconductor (CMOS) processes. The polymer-based piezoelectric is a promising material that satisfies many of the requirements for obtaining high performance implantable microphones and in vivo piezoelectric energy harvesters. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

Back to TopTop