polymers-logo

Journal Browser

Journal Browser

Polymer Science and Technology: When Progress Meets Sustainability and Reliability

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Innovation of Polymer Science and Technology".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 569

Special Issue Editors


E-Mail Website
Guest Editor
Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy
Interests: hybrid O/I systems; sol–gel processes; biomacromolecules; biopolymers; flame retardance; structure–property–processing relationships; thermal degradation; polymer (nano)composites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
Interests: polymer processing; mechanical behaviour of polymer-based systems; rheological behaviour of polymer-based systems; green composites; biocomposites; nanocomposites; biodegradable polymers; polymer blends; degradation and recycling of polymer-based systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Guest Editors of the upcoming Special Issue entitled “Polymer Science and Technology: When Progress Meets Sustainability and Reliability”, which originates from the 3rd International Online Conference on Polymers Science (IOCPS 2025) sponsored by the MDPI open access journal Polymers (ISSN 2073-4360; IF: 4.9), we are pleased to invite your submissions.

This Special Issue aims to showcase recent advances and trends in polymer science and technology, with the goal of bringing together sustainability, reliability, and performance in the complex world of polymer systems. Topics of interest include, but are not limited to, the following areas:

  1. Biobased, biodegradable-compostable, and recyclable polymers;
  2. Polymer analysis and characterization;
  3. Recent functional and structural applications of polymer systems;
  4. Polymer composites and nanocomposites;
  5. Polymer physics and theory.

We hope to receive numerous submissions to the Special Issue.

Kind regards,

Prof. Dr. Giulio Malucelli
Prof. Dr. Francesco Paolo La Mantia
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biobased polymer systems
  • biodegradable
  • compostable polymers
  • polymer recycling
  • structural polymer systems
  • functional polymer systems
  • polymer composites
  • polymer nanocomposites
  • polymer physics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2388 KB  
Article
Sustainable Composites from Recycled Polypropylene and Hazelnut Shell Flour for Application in Irrigation Systems
by Francesco Paolo La Mantia, Roberto Scaffaro, Giuseppe Balsamo, Carmelo Giuffré, Erica Gea Rodi, Simone Corviseri and Maria Clara Citarrella
Polymers 2025, 17(23), 3207; https://doi.org/10.3390/polym17233207 - 1 Dec 2025
Viewed by 299
Abstract
The irrigation sector urgently needs more eco-sustainable materials able to guarantee the same performance as traditional fittings manufactured from virgin fossil-based polymers. In this study, sustainable composites were developed by melt-compounding virgin and recycled polypropylene (RPP) with hazelnut shell (HS) powder with or [...] Read more.
The irrigation sector urgently needs more eco-sustainable materials able to guarantee the same performance as traditional fittings manufactured from virgin fossil-based polymers. In this study, sustainable composites were developed by melt-compounding virgin and recycled polypropylene (RPP) with hazelnut shell (HS) powder with or without maleic-anhydride-grafted polypropylene (PPC) coupling agent. The materials were characterized by a rheological and mechanical point of view. At high shear rates, the viscosity curves of matrices and composites converge, making the difference between neat and filled systems negligible in terms of processability. This indicates that standard injection-molding parameters used for the neat matrices can also be applied to the composites without significant adjustments. Tensile tests showed that adding 10 wt% HS powder increased the elastic modulus by approximately 30% (from 960 MPa to 1.2 GPa) while reducing elongation at break by about 90% compared with neat RPP. The use of PPC mitigated this loss of ductility, partially restoring tensile strength and increasing EB from 6% to 18% in RPP-based composites (+200%). Finally, sleeve bodies and nuts injection-molded from RPP/HS5 and RPP/HS5/PPC successfully resisted internal water pressure up to 3.5 bar without leakage or structural damage. These findings demonstrate that agro-industrial waste can be effectively valorized as a functional filler in recycled polypropylene, enabling the manufacture of irrigation fittings with mechanical and processing performances comparable to those of virgin PP and supporting the transition toward a circular economy. Full article
Show Figures

Figure 1

Back to TopTop