Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. MD Simulations
3. Results and Discussion
3.1. Force Field Validation
3.2. The Effects of Chain Length, Temperature, and Salt Concentration on an Unprotonated PDMAEMA Chain
3.2.1. Chain Length
3.2.2. Salt Concentration
3.2.3. PDMAEMA Aggregation and Its Dependence on Temperature and Salt
3.2.4. Salt Ions and Their Interaction with PDMAEMA
3.3. The Effect of pH and Salt Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Li, C.M.; Tang, Y.Q.; Armes, S.P.; Morris, C.J.; Rose, S.F.; Lloyd, A.W.; Lewis, A.L. Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 2005, 6, 994–999. [Google Scholar] [CrossRef]
- Cho, S.H.; Jhon, M.S.; Yuk, S.H.; Lee, H.B. Temperature-induced phase transition of poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide). J. Polym. Sci. Pt. B-Polym. Phys. 1997, 35, 595–598. [Google Scholar] [CrossRef]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Rawlinson, L.A.B.; Ryan, S.M.; Mantovani, G.; Syrett, J.A.; Haddleton, D.M.; Brayden, D.J. Antibacterial Effects of Poly(2-(dimethylamino ethyl)methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria. Biomacromolecules 2010, 11, 443–453. [Google Scholar] [CrossRef]
- Chen, Y.; Wilbon, P.A.; Chen, Y.P.; Zhou, J.H.; Nagarkatti, M.; Wang, C.P.; Chu, F.X.; Decho, A.W.; Tang, C.B. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2012, 2, 10275–10282. [Google Scholar] [CrossRef]
- Ganewatta, M.S.; Miller, K.P.; Singleton, S.P.; Mehrpouya-Bahrami, P.; Chen, Y.P.; Yan, Y.; Nagarkatti, M.; Nagarkatti, P.; Decho, A.W.; Tang, C.B. Antibacterial and Biofilm-Disrupting Coatings from Resin Acid-Derived Materials. Biomacromolecules 2015, 16, 3336–3344. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, L.; Millians, W.; Wu, T.E.H.; Ming, W.H. Dual-Functional Antifogging/Antimicrobial Polymer Coating. ACS Appl. Mater. Interfaces 2016, 8, 8737–8742. [Google Scholar] [CrossRef] [PubMed]
- Haktaniyan, M.; Bradley, M. Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev. 2022, 51, 8584–8611. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Zhang, Y.; Maji, S.; Greiner, A. PDMAEMA based gene delivery materials. Mater. Today 2012, 15, 388–393. [Google Scholar] [CrossRef]
- Slita, A.V.; Kasyanenko, N.A.; Nazarova, O.V.; Gavrilova, I.I.; Eropkina, E.M.; Sirotkin, A.K.; Smirnova, T.D.; Kiselev, O.I.; Panarin, E.F. DNA-polycation complexes—Effect of polycation structure on physico-chemical and biological properties. J. Biotechnol. 2007, 127, 679–693. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, Y.; Song, X.; Zhu, J.; Li, J. Nonviral DNA delivery system with supramolecular PEGylation formed by host–guest pseudo-block copolymers. ACS Appl. Bio Mater. 2021, 4, 5057–5070. [Google Scholar] [CrossRef]
- Yuan, Y.; Raheja, K.; Milbrandt, N.B.; Beilharz, S.; Tene, S.; Oshabaheebwa, S.; Gurkan, U.A.; Samia, A.C.S.; Karayilan, M. Thermoresponsive polymers with LCST transition: Synthesis, characterization, and their impact on biomedical frontiers. RSC Appl. Polym. 2023, 1, 158–189. [Google Scholar] [CrossRef]
- Boutris, C.; Chatzi, E.; Kiparissides, C. Characterization of the LCST behaviour of aqueous poly (N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer 1997, 38, 2567–2570. [Google Scholar] [CrossRef]
- Yanez-Macias, R.; Alvarez-Moises, I.; Perevyazko, I.; Lezov, A.; Guerrero-Santos, R.; Schubert, U.S.; Guerrero-Sanchez, C. Effect of the Degree of Quaternization and Molar Mass on the Cloud Point of Poly 2-(dimethylamino)ethyl methacrylate Aqueous Solutions: A Systematic Investigation. Macromol. Chem. Phys. 2017, 218, 1700065. [Google Scholar] [CrossRef]
- Mohammadi, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Golshan, M. Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly(2-(dimethylamino)ethyl methacrylate). Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 455–461. [Google Scholar] [CrossRef]
- Bütün, V.; Armes, S.; Billingham, N. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 2001, 42, 5993–6008. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, X. Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer 1999, 40, 6985–6990. [Google Scholar] [CrossRef]
- Platé, N.A.; Lebedeva, T.L.; Valuev, L.I. Lower critical solution temperature in aqueous solutions of N-alkyl-substituted polyacrylamides. Polym. J. 1999, 31, 21–27. [Google Scholar] [CrossRef]
- Masaro, L.; Ousalem, M.; Baille, W.; Lessard, D.; Zhu, X. Self-diffusion studies of water and poly (ethylene glycol) in solutions and gels of selected hydrophilic polymers. Macromolecules 1999, 32, 4375–4382. [Google Scholar] [CrossRef]
- Spěváček, J.; Geschke, D.; Ilavský, M. 1H NMR study of temperature collapse of linear and crosslinked poly (N,N-diethylacrylamide) in D2O. Polymer 2001, 42, 463–468. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ishizone, T.; Nakahama, S. Additive effect of triethylborane on anionic polymerization of N,N-dimethylacrylamide and N,N-diethylacrylamide. Macromolecules 2000, 33, 4411–4416. [Google Scholar] [CrossRef]
- Nagumo, R.; Nishikawa, K.; Sato, A.; Ogita, A.; Iwata, S. Molecular dynamics simulations of the folding structure of a thermoresponsive 2-dimethylaminoethyl methacrylate oligomer in the globule state. Polym. J. 2023, 55, 85–93. [Google Scholar] [CrossRef]
- Min, S.H.; Kwak, S.K.; Kim, B.-S. Atomistic simulation for coil-to-globule transition of poly (2-dimethylaminoethyl methacrylate). Soft Matter 2015, 11, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Mintis, D.G.; Mavrantzas, V.G. Effect of pH and molecular length on the structure and dynamics of short poly (acrylic acid) in dilute solution: Detailed molecular dynamics study. J. Phys. Chem. B 2019, 123, 4204–4219. [Google Scholar] [CrossRef]
- Mintis, D.G.; Alexiou, T.S.; Mavrantzas, V.G. Effect of pH and Molecular Length on the Structure and Dynamics of Linear and Short-Chain Branched Poly(ethylene imine) in Dilute Solution: Scaling Laws from Detailed Molecular Dynamics Simulations. J. Phys. Chem. B 2020, 124, 6154–6169. [Google Scholar] [CrossRef]
- Tippner, S.; Hernández-Castillo, D.; Schacher, F.H.; González, L. All-Atom Molecular Dynamics Simulations of Grafted Poly (N,N-dimethylaminoethyl methacrylate) Brushes. J. Phys. Chem. B 2025, 129, 2105–2114. [Google Scholar] [CrossRef]
- Alaghemandi, M.; Spohr, E. Molecular Dynamics Investigation of the Thermo-Responsive Polymer Poly(N-isopropylacrylamide). Macromol. Theory Simul. 2012, 21, 106–112. [Google Scholar] [CrossRef]
- de Oliveira, T.E.; Marques, C.M.; Netz, P.A. Molecular dynamics study of the LCST transition in aqueous poly(N-n-propylacrylamide). Phys. Chem. Chem. Phys. 2018, 20, 10100–10107. [Google Scholar] [CrossRef]
- Du, H.B.; Wickramasinghe, R.; Qian, X.H. Effects of Salt on the Lower Critical Solution Temperature of Poly (N-Isopropylacrylamide). J. Phys. Chem. B 2010, 114, 16594–16604. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.A.; Sankaranarayanan, S.; Suthar, K.; Mancini, D.C. Role of Solvation Dynamics and Local Ordering of Water in Inducing Conformational Transitions in Poly(N-isopropylacrylamide) Oligomers through the LCST. J. Phys. Chem. B 2012, 116, 2651–2663. [Google Scholar] [CrossRef]
- Dalgakiran, E.; Tatlipinar, H. Atomistic insights on the LCST behavior of PMEO(2)MA in water by molecular dynamics simulations. J. Polym. Sci. Pt. B-Polym. Phys. 2018, 56, 429–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cremer, P.S. The inverse and direct Hofmeister series for lysozyme. Proc. Natl. Acad. Sci. USA 2009, 106, 15249–15253. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, N.; Horinek, D.; Netz, R.R. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces. Langmuir 2013, 29, 2602–2614. [Google Scholar] [CrossRef]
- Idziak, I.; Avoce, D.; Lessard, D.; Gravel, D.; Zhu, X. Thermosensitivity of aqueous solutions of poly (N,N-diethylacrylamide). Macromolecules 1999, 32, 1260–1263. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Für Exp. Pathol. Und Pharmakol. 1888, 24, 247–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Sagle, L.B.; Cho, Y.; Bergbreiter, D.E.; Cremer, P.S. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 2007, 111, 8916–8924. [Google Scholar] [CrossRef]
- Heyda, J.; Vincent, J.C.; Tobias, D.J.; Dzubiella, J.; Jungwirth, P. Ion specificity at the peptide bond: Molecular dynamics simulations of N-methylacetamide in aqueous salt solutions. J. Phys. Chem. B 2009, 114, 1213–1220. [Google Scholar] [CrossRef]
- Mintis, D.G.; Dompé, M.; Kamperman, M.; Mavrantzas, V.G. Effect of Polymer Concentration on the Structure and Dynamics of Short Poly(N,N-dimethylaminoethyl methacrylate) in Aqueous Solution: A Combined Experimental and Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 240–252. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Gordon, M.S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a decade later. In Theory and Applications of Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [Google Scholar]
- Joung, I.S.; Cheatham, T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20, 720–729. [Google Scholar] [CrossRef]
- Sun, H.; Mumby, S.J.; Maple, J.R.; Hagler, A.T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987. [Google Scholar] [CrossRef]
- Jha, P.K.; Desai, P.S.; Li, J.; Larson, R.G. pH and salt effects on the associative phase separation of oppositely charged polyelectrolytes. Polymers 2014, 6, 1414–1436. [Google Scholar] [CrossRef]
- Lee, H.; Son, S.H.; Sharma, R.; Won, Y.-Y. A Discussion of the pH-Dependent Protonation Behaviors of Poly (2-(dimethylamino) ethyl methacrylate)(PDMAEMA) and Poly (ethylenimine-ran-2-ethyl-2-oxazoline)(P (EI-r-EOz)). J. Phys. Chem. B 2011, 115, 844–860. [Google Scholar] [CrossRef]
- Spruijt, E.; Cohen Stuart, M.A.; van der Gucht, J. Linear viscoelasticity of polyelectrolyte complex coacervates. Macromolecules 2013, 46, 1633–1641. [Google Scholar] [CrossRef]
- Stern, H.A. Molecular simulation with variable protonation states at constant pH. J. Chem. Phys. 2007, 126, 164112. [Google Scholar] [CrossRef]
- Sharma, A.; Smith, J.D.; Walters, K.B.; Rick, S.W. Constant pH simulations of pH responsive polymers. J. Chem. Phys. 2016, 145, 234906. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, W.; Wallace, J.A.; Shen, J. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water. J. Chem. Theory Comput. 2016, 12, 5411–5421. [Google Scholar] [CrossRef]
- Radak, B.K.; Chipot, C.; Suh, D.; Jo, S.; Jiang, W.; Phillips, J.C.; Schulten, K.; Roux, B. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J. Chem. Theory Comput. 2017, 13, 5933–5944. [Google Scholar] [CrossRef]
- Islam, N.N.; Sharma, A.; Gyawali, G.; Kumar, R.; Rick, S.W. Coarse-Grained Models for Constant pH Simulations of Carboxylic Acids. J. Chem. Theory Comput. 2019, 15, 4623–4631. [Google Scholar] [CrossRef]
- Donnini, S.; Tegeler, F.; Groenhof, G.; Grubmüller, H. Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics. J. Chem. Theory Comput. 2011, 7, 1962–1978. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Theodorou, D.N.; Suter, U.W. Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 1986, 19, 139–154. [Google Scholar] [CrossRef]
- Ramos, J.; Peristeras, L.D.; Theodorou, D.N. Monte Carlo simulation of short chain branched polyolefins in the molten state. Macromolecules 2007, 40, 9640–9650. [Google Scholar] [CrossRef]
- Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Mintis, D.G.; Mavrantzas, V.G. Phase Boundary and Salt Partitioning in Coacervate Complexes Formed between Poly(acrylic acid) and Poly(N,N-dimethylaminoethyl methacrylate) from Detailed Atomistic Simulations Combined with Free Energy Perturbation and Thermodynamic Integration Calculations. Macromolecules 2020, 53, 7618–7634. [Google Scholar] [CrossRef]
- Zhelavskyi, O.S.; Kyrychenko, A. Atomistic molecular dynamics simulations of the LCST conformational transition in poly(N-vinylcaprolactam) in water. J. Mol. Graph. Model. 2019, 90, 51–58. [Google Scholar] [CrossRef]
- Sun, X.Q.; Qian, X.H. Atomistic Molecular Dynamics Simulations of the Lower Critical Solution Temperature Transition of Poly(N-vinylcaprolactam) in Aqueous Solutions. J. Phys. Chem. B 2019, 123, 4986–4995. [Google Scholar] [CrossRef]
- Khokhlov, A.R.; Grosberg, A.Y.; Pande, V.S. Statistical Physics of Macromolecules; Springer: Berlin/Heidelberg, Germany, 1994; Volume 1. [Google Scholar]
- Yamakawa, H. Modern Theory of Polymer Solutions; Harper & Row: New York, NY, USA, 1971. [Google Scholar]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Andricioaei, I.; Karplus, M. On the calculation of entropy from covariance matrices of the atomic fluctuations. J. Chem. Phys. 2001, 115, 6289–6292. [Google Scholar] [CrossRef]
- Polyansky, A.A.; Kuzmanic, A.; Hlevnjak, M.; Zagrovic, B. On the contribution of linear correlations to quasi-harmonic conformational entropy in proteins. J. Chem. Theory Comput. 2012, 8, 3820–3829. [Google Scholar] [CrossRef] [PubMed]
- Vijay-Kumar, S.; Bugg, C.E.; Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 1987, 194, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, A.V.; Colby, R.H.; Rubinstein, M. Scaling theory of polyelectrolyte solutions. Macromolecules 1995, 28, 1859–1871. [Google Scholar] [CrossRef]
- Dobrynin, A.V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049–1118. [Google Scholar] [CrossRef]
Sample | c1 (kg m−3) | c2 (kg m−3) | c3 (kg m−3) | c4 (kg m−3) | c5 (kg m−3) |
---|---|---|---|---|---|
PDMAEMA Mn = 5.5 kg mol−1 | 9.98 | 14.42 | 18.53 | 25.95 | 32.44 |
PDMAEMA Mn = 19.0 kg mol−1 | 9.68 | 13.99 | 17.98 | 25.18 | 31.47 |
No | nchains | N (mer) | csalt (M) | T (K) | Force Field | Charge Method | H2O Model | Degree of Ionization, α+ (%) | Total Simulation Time (ns) |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 30 | 0 | 277 | GAFF | RESP | SPCE | 0% | 549 |
2 | 1 | 30 | 0 | 283 | GAFF | RESP | SPCE | 0% | 822 |
3 | 1 | 30 | 0 | 303 | GAFF | RESP | SPCE | 0% | 315 |
4 | 1 | 30 | 0 | 315 | GAFF | RESP | SPCE | 0% | 705 |
5 | 1 | 30 | 0 | 338 | GAFF | RESP | SPCE | 0% | 490 |
6 | 1 | 30 | 1 | 283 | GAFF | RESP | SPCE | 0% | 494 |
7 | 1 | 30 | 1 | 338 | GAFF | RESP | SPCE | 0% | 300 |
8 | 1 | 30 | 0 | 350 | GAFF | RESP | SPCE | 0% | 239 |
9 | 1 | 30 | 0 | 360 | GAFF | RESP | SPCE | 0% | 234 |
10 | 1 | 30 | 0 | 370 | GAFF | RESP | SPCE | 0% | 232 |
11 | 3 | 30 | 0 | 283 | GAFF | RESP | SPCE | 0% | 360 |
12 | 3 | 30 | 0 | 350 | GAFF | RESP | SPCE | 0% | 297 |
13 | 3 | 30 | 1 | 283 | GAFF | RESP | SPCE | 0% | 287 |
14 | 1 | 50 | 0 | 283 | GAFF | RESP | SPCE | 0% | 322 |
15 | 1 | 50 | 0 | 350 | GAFF | RESP | SPCE | 0% | 372 |
16 | 1 | 70 | 0 | 283 | GAFF | RESP | SPCE | 0% | 378 |
17 | 1 | 70 | 0 | 338 | GAFF | RESP | SPCE | 0% | 327 |
18 | 1 | 70 | 0 | 350 | GAFF | RESP | SPCE | 0% | 170 |
19 | 1 | 110 | 0 | 283 | GAFF | RESP | SPCE | 0% | 746 |
20 | 1 | 110 | 0 | 338 | GAFF | RESP | SPCE | 0% | 286 |
21 | 3 | 110 | 0 | 283 | GAFF | RESP | SPCE | 0% | 285 |
22 | 3 | 110 | 0 | 338 | GAFF | RESP | SPCE | 0% | 296 |
23 | 1 | 70 | 1 | 283 | GAFF | RESP | SPCE | 0% | 383 |
24 | 1 | 70 | 1 | 338 | GAFF | RESP | SPCE | 0% | 332 |
25 | 1 | 110 | 1 | 283 | GAFF | RESP | SPCE | 0% | 300 |
26 | 1 | 110 | 1 | 338 | GAFF | RESP | SPCE | 0% | 304 |
27 | 1 | 30 | 0 | 283 | GAFF | RESP | SPCE | 50% | 200 |
28 | 1 | 30 | 0 | 303 | GAFF | RESP | SPCE | 50% | 200 |
29 | 1 | 30 | 0 | 338 | GAFF | RESP | SPCE | 50% | 200 |
30 | 1 | 30 | 1 | 283 | GAFF | RESP | SPCE | 50% | 200 |
31 | 1 | 30 | 1 | 303 | GAFF | RESP | SPCE | 50% | 200 |
32 | 1 | 30 | 1 | 338 | GAFF | RESP | SPCE | 50% | 200 |
33 | 1 | 30 | 0 | 338 | OPLS | RESP | SPCE | 50% | 200 |
34 | 1 | 30 | 0 | 338 | MMFF | RESP | SPCE | 50% | 200 |
35 | 1 | 30 | 0 | 338 | MMFF | MMFF | SPCE | 50% | 61 |
36 | 1 | 30 | 0 | 338 | PCFF | PCFF | PCFF | 50% | 109 |
37 | 1 | 30 | 0 | 283 | GAFF | RESP | SPCE | 100% | 300 |
38 | 1 | 30 | 0 | 338 | GAFF | RESP | SPCE | 100% | 300 |
39 | 1 | 30 | 1 | 283 | GAFF | RESP | SPCE | 100% | 300 |
40 | 1 | 30 | 1 | 338 | GAFF | RESP | SPCE | 100% | 300 |
N (mer) | 30 | 50 | 70 | 110 |
L (nm) | 9.1 | 15.2 | 21.3 | 33.6 |
b (nm) | 0.66 | 0.67 | 0.77 | 0.83 |
NK | 13.7 | 22.8 | 27.9 | 40.4 |
277 | 32.54 | 3.14 | ||
283 | 32.51 | 21.29 | 3.14 | 2.89 |
338 | 5.10 | 3.20 | 2.05 | 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mintis, D.G.; Dompé, M.; Kolokathis, P.D.; van der Gucht, J.; Afantitis, A.; Mavrantzas, V.G. Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study. Polymers 2025, 17, 2189. https://doi.org/10.3390/polym17162189
Mintis DG, Dompé M, Kolokathis PD, van der Gucht J, Afantitis A, Mavrantzas VG. Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study. Polymers. 2025; 17(16):2189. https://doi.org/10.3390/polym17162189
Chicago/Turabian StyleMintis, Dimitris G., Marco Dompé, Panagiotis D. Kolokathis, Jasper van der Gucht, Antreas Afantitis, and Vlasis G. Mavrantzas. 2025. "Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study" Polymers 17, no. 16: 2189. https://doi.org/10.3390/polym17162189
APA StyleMintis, D. G., Dompé, M., Kolokathis, P. D., van der Gucht, J., Afantitis, A., & Mavrantzas, V. G. (2025). Effect of pH, Temperature, Molecular Weight and Salt Concentration on the Structure and Hydration of Short Poly(N,N-dimethylaminoethyl methacrylate) Chains in Dilute Aqueous Solutions: A Combined Experimental and Molecular Dynamics Study. Polymers, 17(16), 2189. https://doi.org/10.3390/polym17162189