polymers-logo

Journal Browser

Journal Browser

Biomaterials Modification, Characterization and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 5815

Special Issue Editor


E-Mail Website
Guest Editor
College of Textiles, Donghua University, Shanghai 201620, China
Interests: biomaterials; islet encapsulation; bioprinting; hydrogels; nanofibers; textiles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biomaterials play crucial roles in various fields, including medicine, tissue engineering, and drug delivery, due to their ability to interact with biological systems. The modification, characterization, and application of biomaterials are key areas of research for improving their performances and expanding their range of uses.

The modification of biomaterials involves tailoring their properties to meet specific requirements for different applications. This can include making surface modifications to enhance biocompatibility, the incorporation of bioactive molecules to promote cell adhesion or changes in mechanical properties for tissue engineering applications.

The characterization of biomaterials is essential to understand their structures, properties, and interactions with biological systems. Techniques such as spectroscopy, microscopy, mechanical testing, and degradation studies are typically used to analyze the chemical compositions, morphologies, mechanical strengths, degradation kinetics, and biological responses of biomaterials.

The applications of biomaterials are diverse and include medical implants, drug delivery systems, scaffolds for tissue regeneration, and diagnostic tools. Biomaterials are used in orthopedic implants, dental materials, cardiovascular devices, and neural interfaces, among others, to improve patient outcomes and quality of life.

Overall, the field of biomaterials continues to evolve through advancements in their modification, characterization, and innovative application, enabling progress in healthcare, biotechnology, and materials science.

This Special Issue will cover current research progress on developing novel biomaterials with enhanced properties, improving characterization techniques to better understand their behavior in complex environments, and exploring new applications in emerging fields such as bioelectronics and personalized medicine.

You may choose our Joint Special Issue in Materials.

Prof. Dr. Wanjun Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • tissue engineering
  • drug delivery
  • biomedicine

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

37 pages, 17942 KiB  
Article
Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool
by Sherif S. Hindi
Polymers 2025, 17(9), 1182; https://doi.org/10.3390/polym17091182 - 26 Apr 2025
Viewed by 76
Abstract
This research explores the potential of green encapsules uploaded with eucalypt essential oil (EEOs) in enhancing their functionality and application in pest control, focusing on suitable ecotype selection from King Abdulaziz University (KAU) campus, Hada Al-Sham (HAS) village, and Briman district as well [...] Read more.
This research explores the potential of green encapsules uploaded with eucalypt essential oil (EEOs) in enhancing their functionality and application in pest control, focusing on suitable ecotype selection from King Abdulaziz University (KAU) campus, Hada Al-Sham (HAS) village, and Briman district as well as optimizing extraction processes. Eucalypt hybrids’ leaves were collected from three different sites, and the EEOs were extracted using microwave-assisted steam distillation (MASD) and electric steam distillation (ESD) techniques. The physical and chemical properties of the EEO were determined. The identification of volatile chemical ingredients in the resulting EEOs was conducted using GC/MS after saponification and methylation procedures, and the ingredients were compared to those obtained from Eucalyptus globulus Labill, the ideal species containing the 1,8-cineol, the principal compound in its essential oil. The 1,8-cineole was found to be the major chemical constituent of the EEOs all over the two extraction methods, regardless of the ecotypes examined, and was interfered with other minor components such as 3-carene, α-pinene, α-myrcene, D-limonene, and α-terpinene. Eucalypt ecotypes grown at Hada Al-Sham village had the highest cineole content (59.29%) among the other sites studied. Compared to the ESD technique, MASD showed much promise because it is simple, facile, more ecofriendly and cost-effective, it kept oils true to their original form, and it allows to warm larger machines and spaces. The polymeric encapsules of either guar gum crosslinked by borax or sodium alginate crosslinked by calcium chloride were fabricated. Moreover, a bioassay screening of the encapsules uploaded with 1,8-cineole was evaluated against termite infection. The encapsules were found to be versatile tools with a wide range of applications; in particular, the alginate encapsules displayed superior characteristics. Furthermore, regardless of the encapsule type and the exposure duration, the mortality (%) of the insects was exceeded significantly for the high cineol concentrations compared to the lower ones for both alginate-based encapsules (ABEs) and guar gum-based encapsules (GGBEs). The higher the cineol concentrations, the higher the mortality percent of the termites. This finding can be attributed to the rapid toxic effect of the cineol compound at higher concentrations. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

12 pages, 2510 KiB  
Article
Nanofibrous Membrane-Based Stretchable Electrochemical Sweat Sensor for pH Detection
by Longzhou Zhang, Baoyuan Ma, Zhiguang Xu and Yan Zhao
Polymers 2025, 17(5), 663; https://doi.org/10.3390/polym17050663 - 28 Feb 2025
Viewed by 491
Abstract
Wearable, non-invasive sweat sensors capable of continuously monitoring the pH of sweat, which is a key indicator related to metabolism and homeostasis level, are highly desirable for personal health management. However, ensuring the stability and accuracy of these sensors can be challenging when [...] Read more.
Wearable, non-invasive sweat sensors capable of continuously monitoring the pH of sweat, which is a key indicator related to metabolism and homeostasis level, are highly desirable for personal health management. However, ensuring the stability and accuracy of these sensors can be challenging when the body is in motion. In this work, we prepared a stretchable nanofibrous membrane-based electrochemical pH-sensing electrode by embedding carbon nanotubes (MWCNT) and silver nanowires (AgNWs) into an elastic electrospun nanofibrous membrane, followed by polyaniline electrodeposition. The as-prepared pH-sensing electrode showed a high sensitivity of 82.53 mV/pH and high accuracy in ionic solutions with pH ranging from 3 to 7. Notably, the electrode maintained stable sensing performance under deformations, including torsion, bending, and tensile strains up to 30%. Even after 1000 cycles of stretching at a 30% tensile strain, the detection sensitivity remained above 70 mV/pH, indicating its potential application as a wearable electrochemical sensor for monitoring sweat pH in personal health management. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

8 pages, 3336 KiB  
Article
Green Synthesis of Biocompatible Chiral Gold Nanoparticles
by Yuan Fan, Na Li, Jiaolong Wang, Lan Liao and Junchao Wei
Polymers 2024, 16(23), 3333; https://doi.org/10.3390/polym16233333 - 28 Nov 2024
Viewed by 827
Abstract
Chiral gold nanoparticles (Au NPs) have been investigated widely and have shown great potential in biomedical applications, such as biosensing, combating bacterial infections and tissue regeneration. However, some stabilizers and reducing agents for the synthesis of chiral Au NPs can produce toxicity in [...] Read more.
Chiral gold nanoparticles (Au NPs) have been investigated widely and have shown great potential in biomedical applications, such as biosensing, combating bacterial infections and tissue regeneration. However, some stabilizers and reducing agents for the synthesis of chiral Au NPs can produce toxicity in living organisms. Therefore, it is interesting to design green methods to prepare chiral gold nanoparticles that are nontoxic, environment-friendly, and low-cost. Herein, novel biocompatible chiral Au NPs with a diameter of 54.4 ± 14.9 nm were prepared by the in situ reduction of HAuCl4 with alginates as the green reducing agent and chiral-inducing and stabilizing agent. XPS, TGA, UV-Vis and CD analyses demonstrated that alginate-stabilized chiral Au NPs (ALG-Au NPs) were successfully prepared, while biocompatibility assessment showed that cell viability was 116.0% when the concentration of ALG-Au NPs arrived at 300 μg/mL, which indicated that ALG-AuNPs showed excellent biocompatibility. Furthermore, the ALG-Au NPs can respond to metal ions, such as Ca2+, Cu2+, Mn2+ and so on, implying potential application for biosensing. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction
by Yixiao Wu, Chenlin Fu, Jiaxin Xing, Lin Yang, Chong Zhao and Kun Yan
Polymers 2024, 16(23), 3244; https://doi.org/10.3390/polym16233244 - 22 Nov 2024
Cited by 1 | Viewed by 904
Abstract
Herein, this study reports the development of a multifunctional conductive antibacterial cotton fabric through the utilization of the natural polyphenol-mediated silver mirror reaction. The experimental results demonstrate that polyphenols can effectively facilitate the deposition of silver nanoparticles (AgNPs), resulting in a uniform and [...] Read more.
Herein, this study reports the development of a multifunctional conductive antibacterial cotton fabric through the utilization of the natural polyphenol-mediated silver mirror reaction. The experimental results demonstrate that polyphenols can effectively facilitate the deposition of silver nanoparticles (AgNPs), resulting in a uniform and durable hybrid nanocoating on the cotton fabric. The effects of polyphenol’s molecular weights on the coating structures and stabilities have been revealed via two distinct approaches: washing resistance and electrochemical testing systems. It has been concluded that lower-molecular-weight phenols induce a compact and dense coating structure, whereas polyphenols such as tannic acid exhibit relatively high stability, achieving an excellent conductivity of 0.2 S/cm and a good washing resistance of 67% over five cycles. The underlying mechanism has been further confirmed by the cyclic voltammetry measurements, suggesting that polyphenols play a significant role in stabilizing AgNPs and preventing their dissolution. Furthermore, the Ag-doped polyphenol-coated fabrics exhibit notable antibacterial properties. By coupling natural polyphenols with typical silver mirror reactions, this study not only offers a sustainable alternative to synthetic chemicals but also presents a promising method to endow cotton textiles with the dual properties of conductivity and antibacterial activity. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

13 pages, 2518 KiB  
Article
Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria
by Wenfeng Chen, Sha Wan, Hongxin Lin, Shimi Li, Anhua Deng, Lihui Feng, Yangfan Xu, Xu Zhang, Zhen Hu, Fang Xu and Kun Yan
Polymers 2024, 16(21), 3027; https://doi.org/10.3390/polym16213027 - 29 Oct 2024
Cited by 1 | Viewed by 1012
Abstract
Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria [...] Read more.
Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria from water. The PDA nanocoating can be easily applied through an in situ self-polymerization process, resulting in a considerably high bacterial adsorption capacity of 6.6 k pcs mm−2 for Staphylococcus aureus. A cyclic flow-through dynamic filtration and a disinfection system was implemented using an MS@PDA porous filter with an average pore size of 21.8 ± 1.4 µm and porosity of ~83%, achieving a 5.2–6.0-fold enhancement in the cumulative removal efficiency for MS@PDA2. The underlying mechanisms were elucidated through the synergistic effects of interfacial bio-adsorption and size-dependent interception. Notably, the bacteria captured on the surface could be killed using the enhanced photothermal effects of the PDA nanocoating and the inherent antimicrobial properties of the mineral stone. Thus, this study not only provides a new type of advanced bio-adsorbent but also provides new perspectives on an efficient and cost-effective approach for sustainable wastewater treatment. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Graphical abstract

22 pages, 21751 KiB  
Article
Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil
by David Castro, Aleksandr Podshivalov, Alina Ponomareva and Anton Zhilenkov
Polymers 2024, 16(17), 2531; https://doi.org/10.3390/polym16172531 - 6 Sep 2024
Cited by 4 | Viewed by 1692
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains [...] Read more.
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young’s modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5–1 wt.%. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

Review

Jump to: Research

13 pages, 484 KiB  
Review
Recent Advances in Silk Fibroin-Based Composites for Bone Repair Applications: A Review
by Siyu Zhu, Qian Zhang, Xiang Xu, Zulan Liu, Guotao Cheng, Dingpei Long, Lan Cheng and Fangyin Dai
Polymers 2025, 17(6), 772; https://doi.org/10.3390/polym17060772 - 14 Mar 2025
Viewed by 583
Abstract
Silk fibroin (SF), a natural high-molecular-weight fiber protein extracted from silk, has demonstrated immense potential in bone tissue repair and regeneration due to its exceptional physicochemical properties. Silk fibroin can be processed into various scaffold forms using diverse fabrication techniques, combined with other [...] Read more.
Silk fibroin (SF), a natural high-molecular-weight fiber protein extracted from silk, has demonstrated immense potential in bone tissue repair and regeneration due to its exceptional physicochemical properties. Silk fibroin can be processed into various scaffold forms using diverse fabrication techniques, combined with other biomaterials to create composite structures, or chemically modified to address a wide range of bone defect conditions. This review provides a comprehensive examination of the role of silk fibroin and its composites in bone tissue engineering, with particular emphasis on preclinical studies investigating various silk fibroin-based composite scaffolds in osteogenesis. Additionally, it discusses the current status and challenges in preparing silk fibroin scaffolds tailored to bone tissue defects and explores innovative approaches such as silk fibroin membranes, hydrogels, and 3D-printed constructs. The review begins with an introduction to bone biology, including its composition, structure, healing mechanisms, and the development of bone repair materials. It then delves into the unique properties of silk fibroin, including its composition, structure, and physicochemical attributes, which make it an ideal candidate for bone tissue engineering. This review provides valuable insights into their design, fabrication, and application by critically analyzing recent advancements in silk fibroin-based scaffolds and their functional modifications. Finally, it offers a forward-looking perspective on the future development and translational potential of silk fibroin and its composites in the field of bone repair materials. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

Back to TopTop