Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Management Plan
2.2. Tree Species
2.2.1. Sprouts of the Selected Trees
2.2.2. Leaves’ Raw Materials
2.3. Essential Oil Extraction Process and Apparatus
2.4. Characterizations of the EEOs
2.4.1. Physical Characterization of the EEOs
2.4.2. Chemical Analysis of the EEOs
Fractionated Compounds of the EEOs by GC-MS Analysis
2.4.3. Anatomical Features of the Leave-Tissues Bearing the EEOs
Optical Microscopy
Scanning Electron Microscopy (SEM)
2.5. Microencapsulation
2.5.1. Characterization of the Microcapsules
2.5.2. Bioassay Screening of the Encapsules Against Termite Control
Statistical Work
3. Results and Discussion
3.1. Physical Properties of the Essential Oils
3.1.1. Essential Oil Yield (EOY)
3.1.2. Refractive Index (RI)
3.1.3. Specific Gravity (SG)
3.2. Chemical Properties of the Essential Oils
3.3. Chemical Constituents of the Essential Oil
3.4. Microwave Theory Operation
3.5. Effect of Microwave Irradiation on the Leaves’ Tissues Bearing the Essential Oil
3.6. Characterization of the Microcapsules
3.7. Bioassay Screening of the Encapsules Against Termite Control
4. Conclusions
5. Future Perspectives
6. Patents
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Definition |
AC | Alternate current |
ACS | The American Chemical Society |
ADB | Air-dried membrane |
AFM | Atomic force microscopy |
ANOVA | The analysis of variance |
ASTM | American Society for Testing and Materials |
AV | Acid value |
BST | Biopolymeric structured tissue |
CI | Crystallinity index |
CLB | Compound lipid body |
CW | Cell wall |
CY | Cytoplasm |
DC | Direct current |
DSC | Differential scanning calorimetry |
DTA | Differential thermal analysis |
EC | Endosperm cells |
EHPO | Electric hot-pressed oil |
EHPM | Electric hot-pressing machine |
ES | Essential oil |
ESD | Electric steam distillation |
FEG | Field Emission Gun in the SEM |
FEI | Field Electron and Ion US Company |
FOY | Fixed Oil Yield |
FTIR | Fourier transform infrared spectroscopy |
GC-MS | Gas Chromatography–Mass spectrometer |
GHz | Frequency |
HC | Heat change in µVs/mg |
HPM | Hot-pressing machine |
HVT | High-voltage transformer |
IN | Iodine number |
LSD | Least significant difference |
MAEO | Microwave-assisted extracted oil |
MFT | Maximum final temperature |
MGU | Microwave generator unit |
MHPM | Microwave hot-pressing machine |
NDB | Nanodehydrated-bioplastic membrane |
NIST | The National Institute of Standards and Technology |
NPS | Nanometric particle size |
OY | Oil yield |
PD | Pore diameter |
pH | The acidity or basicity number |
PS | Particle size |
PubChem | An open chemistry database managed by the National Institutes of Health (NHI) |
PVA | Polyvinyl alcohol |
RI | Refractive index |
RT | Residence time |
SD | Standard deviation |
SEM | Scanning electron microscopy |
SEP | Self-electrostatic peeling |
SG | Specific gravity |
SLB | Singular lipid body |
SOV | Source of variation |
SP | Statistical parameters |
SR | Surface roughness |
SV | Saponification value |
SWC | Sinusoidal wave curve |
TGA | Thermogravimetric analysis |
TR | Temperature range |
VFHF | Vibrated-free horizontal flow |
VV | Void volume |
XRD | X-Ray diffraction |
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Property | Chemical Compound | ||||
---|---|---|---|---|---|
Polymer | Crosslinker | ||||
Guar Gum | Alginate | Borax | Calcium Chloride | ||
Chemical structure | |||||
Chemical formula | C10H14N5Na2O12P3 | (C6 H7 O6Na)n | Na2B4O7·10 H2O | CaCl2 | |
Molar mass, g/mol | 50,000 to 8,000,000 | 10,000–600,000 | 381.37 | 111 | |
Density, g/cm3 | 0.8–1.0 | 1–1.03 | 1.73 | 2.15 | |
Melting point | at 1.013 hPa, °C | >100 | 99 | 75 | 775° |
Boiling point | 220 | 495.2 °C | 1575 | 1935 | |
pH (in aqueous solution: 100 g/L, 20 °C) | 5.5–6.2 | 5.5–7.5 | 9–9.5 | 8–10 | |
Solubility, g/L | Soluble in hot water (95 °C) | Slowly soluble in water forming a viscous, colloidal solution, practically insoluble in ethanol (96 per cent) | 49.74 | 745 | |
Color | Yellow White | Dark Yellow | White | White | |
Odor | Odorless | Odorless | Odorless | Odorless | |
IUPAC name | Sodium 3,4,5,6-tetrahydroxyoxane-2-carboxylate | disodium; 3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo [3.3.1]nonane | Calcium dichloride |
References
- Ribeiro, B.S.; Ferreira, M.d.F.; Moreira, J.L.; Santos, L. Simultaneous distillation–extraction of essential oils from Rosmarinus officinalis L. Cosmetics 2021, 8, 117. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, M.; Ahmad, M.H.; Khan, M.; Yasmin, A.; Saima, H.; Abbas, K.; Chaudhary, R.; Rahim, M. Eucalyptus essential oils: Extraction, Characterization and Applications; Nayik, G.A., Ansari, M.J., Eds.; Academic Press: Cambridge, NA, USA, 2023; pp. 217–239. [Google Scholar] [CrossRef]
- Rassem, H.H.A.; Nour, A.H.; Yunus, R.M. Australian Journal of basic and applied sciences techniques for extraction of essential oils from plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Babu, G.D.K.; Singh, B. Simulation of Eucalyptus cinerea oil distillation: A study on optimization of 1,8-cineole production. Biochem. Eng. J. 2009, 44, 226–231. [Google Scholar] [CrossRef]
- Manguro, L.O.A.; Opiyo, S.A.; Asefa, A.; Dagne, E.; Muchori, P.W. Chemical constituents of essential oils from three Eucalyptus species acclimatized in Ethiopia and Kenya. J. Essent. Oil Bear. Plants 2010, 13, 561–567. [Google Scholar] [CrossRef]
- Manika, N.; Chanotiya, C.S.; Negi, M.P.S.; Bagchi, G.D. Copious shoots as a potential source for the production of essential oil in Eucalyptus globulus. Indust. Crops Prod. 2013, 46, 80–84. [Google Scholar] [CrossRef]
- Goodger, J.Q.D.; Senaratne, S.L.; Nicolle, D.; Woodrow, I.E. Correction: Foliar essential oil glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) are a rich source of flavonoids and related non-volatile constituents. PLoS ONE 2016, 11, e0155568. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Miyamoto, A.; Nguyen, H.; Pham, H.; Hoang, H.; Tong, N.; Truong, L.; Nguyen, H. Short communication: Antibacterial effects of essential oils from Cinnamomum cassia bark and Eucalyptus globulus leaves—The involvements of major constituents. PLoS ONE 2023, 18, e0288787. [Google Scholar] [CrossRef]
- Maciel, M.V.; Morais, S.M.; Bevilaqua, C.M.; Silva, R.A.; Barros, R.S.; Sousa, R.N.; Sousa, L.C.; Brito, E.S.; Souza-Neto, M.A. Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet Parasitol. 2010, 167, 1–7. [Google Scholar] [CrossRef]
- Gbenou, J.D.; Ahounou, J.F.; Akakpo, H.B.; Laleye, A.; Yayi, E.; Gbaguidi, F.; Baba-Moussa, L.; Darboux, R.; Dansou, P.; Moudachirou, M.; et al. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Mol. Biol. Rep. 2013, 40, 1127–1134. [Google Scholar] [CrossRef]
- Rehman, R.; Hussain, M.; Muzaffar, R.; Bano, A.; Ahmed, M.; Sadia, H. Eucalyptus essential oil based nanoemulsions: Preparation and biological activities. Chem. Biodiv. 2024, 21, e202400406. [Google Scholar] [CrossRef]
- Shiekh, R.A.E.; Atwa, A.M.; Elgindy, A.M.; Mustafa, A.M.; Senna, M.M.; Alkabbani, M.A.; Ibrahim, K.M. Therapeutic applications of eucalyptus essential oils. Inflammopharmacology 2025, 33, 163–182. [Google Scholar] [PubMed]
- Ayinde, B.A. Eucalyptus (Eucalyptus citriodora Hook., Myrtaceae) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, NA, USA, 2016; pp. 413–419. [Google Scholar]
- Silva, X.; Asiegbu, F.O. Eucalyptus fungal diseases. In Forest Microbiology, Tree Diseases and Pests; Academic Press: Cambridge, NA, USA, 2023; Volume 3, pp. 313–337. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar]
- Warnke, P.H.; Becker, S.T.; Podschun, R.; Sivananthan, S.; Springer, I.N.; Russo, P.A.; Wiltfang, J.; Fickenscher, H.; Sherry, E. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J. Cranio-Maxillofac. Surg. 2009, 37, 392–397. [Google Scholar]
- Fokou, J.B.H.; Dongmo, P.M.J.; Boyom, F.F. Essential oil’s chemical composition and pharmacological properties. In Essential Oils: Oils of Nature; InTechOpen: London, UK, 2020. [Google Scholar]
- Karimi Karemu, C.; Ndung’U, M.W.; Githua, M. Repellent effects of essential oils from selected eucalyptus species and their major constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Int. J. Trop. Insect. Sci. 2013, 33, 188–194. [Google Scholar] [CrossRef]
- Sandner, G.; Heckmann, M.; Weghuber, J. Immunomodulatory activities of selected essential oils. Biomolecules 2020, 10, 1139. [Google Scholar] [CrossRef] [PubMed]
- Hiew, C.W.L.; Junus, L.J.; Tan, S.; Chi, Y.N.; Ee, T.T. Optimization of microwave-assisted extraction and the effect of microencapsulation on mangosteen (Garcinia mangostana L.) rind extract. Food Sci. Technol. 2021, 42, e35521. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar]
- Saoud, A.A.; Yunus, R.M.; Aziz, R.A.; Rahmat, A.R. Study of eucalyptus essential oil acquired by microwave extraction. Acta Hortic. 2005, 679, 173–179. [Google Scholar] [CrossRef]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of Essential Oils: A Review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar]
- Osaili, T.M.; Dhanasekaran, D.K.; Zeb, F.; Faris, M.E.; Naja, F.; Radwan, H.; Cheikh Ismail, L.; Hasan, H.; Hashim, M.; Obaid, R.S. A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023, 28, 1809. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Ferhat, M.A.; Meklati, B.Y.; Smadja, J.; Chemat, F. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 2006, 1112, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, M.T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.M.; Pereira, G.G.; Braga, M.E.; Maróstica, M.R.; Leal, P.F.; Meireles, M.A.A. Low-pressure solvent extraction (solid-liquid extraction, microwave assisted, and ultrasound assisted) from condimentary plants. Extr. Bioact. Compd. Food Prod. 2008, 137–218. [Google Scholar]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Yang, G.; Wang, G.; Li, X.; Zhang, M. Study on new extraction technology and chemical composition of litsea cubeba essential oil. Open Mater. Sci. J. 2011, 5, 93–99. [Google Scholar] [CrossRef]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef]
- Abd El-Gaber, A.S.; El Gendy, A.N.G.; Elkhateeb, A.; Saleh, I.A.; El-Seedi, H.R. Microwave extraction of essential oil from Anastatica hierochuntica (L): Comparison with conventional hydro-distillation and steam distillation. J. Essent. Oil Bear. Plants 2018, 21, 1003–1010. [Google Scholar] [CrossRef]
- Franco-Vega, A.; Ramírez-Corona, N.; López-Malo, A.; Palou, E. Studying microwave assisted extraction of Laurus nobilis essential oil: Static and dynamic modelling. J. Food Eng. 2019, 247, 1–8. [Google Scholar] [CrossRef]
- Tran, T.H.; Ngo, T.C.Q.; Dao, T.P.; Nguyen, P.T.N.; Pham, T.N.; Nguyen, T.D.; Linh, H.T.K.; Nguyen, N.H.; Cang, M.H. Optimizatoin of microwave-assisted extraction and compositional determination of essential oil from leaves of Eucalyptus globulus. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022040. [Google Scholar] [CrossRef]
- Chen, F.; Sun, Y.; Zhao, G.; Liao, X.; Hu, X.; Wu, J.; Wang, Z. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry. Ultrason. Sonochem. 2007, 14, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.C.; Macdonell, P.F.; Brophy, J.J.; Davis, R. Eucalyptus bakeri: A potential source species for eucalyptus oil production in the subtropics. Aust. For. 2021, 84, 182–190. [Google Scholar] [CrossRef]
- Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65. [Google Scholar]
- Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food. Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Technol. 2016, 51, 76–87. [Google Scholar]
- Casanova, F.; Santos, L. Encapsulation of cosmetic active ingredients for topical application—A review. J. Microencapsul. 2016, 33, 1–17. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M.; Mohammadinejad, R.; Thakur, V.K. Biopolymers for biological control of plant pathogens: Advances in microencapsulation of beneficial microorganisms. Polymers 2021, 13, 1938. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a noble technique for the application of bioactive compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Ind. Crops Prod. 2013, 42, 469–479. [Google Scholar]
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar]
- Hoyos-Leyva, J.D.; Bello-Pérez, L.A.; Alvarez-Ramirez, J.; Garcia, H.S. Microencapsulation using starch as wall material: A review. Food Rev. Int. 2018, 34, 148–161. [Google Scholar] [CrossRef]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A Comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar]
- Aguiar, M.C.S.; das Graças Fernandes da Silva, M.F.; Fernandes, J.B.; Forim, M.R. Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep. 2020, 10, 11799. [Google Scholar] [CrossRef] [PubMed]
- Pardini, F.M.; Faccia, P.A.; Amalvy, J.I.; Gonzalez, A.; Irusta, L. Microencapsulation of essential oils by single and coaxial electrospraying in poly ε-caprolactone microcapsules: Characterization and oil release behavior. Int. J. Polym. Mater. Polym. Biomater. 2023, 73, 875–884. [Google Scholar] [CrossRef]
- Anjari, H.M.; Sarjono, I.J.; Danarto, Y.C. Studies of encapsulation efficiency and swelling behavior of briboflavin encapsulated by alginate and chitosan. J. Phys. Conf. Ser. 2022, 2344, 012009. [Google Scholar] [CrossRef]
- Alavijeh, E.S.; Habibpour, B.; Moharramipour, S.; Arash Rasekh, A. Bioactivity of Eucalyptus camaldulensis essential oil against Microcerotermes diversus (Isoptera: Termitidae). J. Crop Prot. 2014, 3, 1–11. [Google Scholar]
- Amri, I.; Khammassi, M.; Ben Ayed, R.; Khedhri, S.; Mansour, M.B.; Kochti, O.; Pieracci, Y.; Flamini, G.; Mabrouk, Y.; Gargouri, S.; et al. Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia. Plants 2023, 12, 816. [Google Scholar] [CrossRef]
- Danna, C.; Malaspina, P.; Cornara, L.; Smeriglio, L.; Trombetta, D.; De Feo, V.; Vanin, S. Eucalyptus essential oils in pest control: A review of chemical composition and applications against insects and mites. Crop Prot. 2024, 176, 106319. [Google Scholar]
- Anonymous. Voucher Specimen Collection, Preparation, Identification and Storage Protocol: Plants: Plants & Fungi, Version 2, Standards for Components of British Columbia’s Biodiversity No. 4b, 1999, 51p. Available online: https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/voucherb.pdf (accessed on 3 April 2025).
- Costa, O.B.D.; Del Menezzi, C.H.S.; Benedito, L.E.C.; Resck, I.S.; Vieira, R.F.; Bizzo, H.R. Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during daytime. Int. J. For. Res. 2014, 2014, 982576. [Google Scholar]
- Alenyorege, E.A.; Hussein, Y.A.; Adongo, T.A. Extraction yield, efficiency and loss of the traditional hot water floatation (HWF) method of oil extraction from the seeds of Allanblackia floribunda. Int. J. Sci. Technol. Res. 2015, 4, 92–95. [Google Scholar]
- Keneni, Y.G.; Bahiru, L.A.; Marchetti, J.M. Effects of different extraction solvents on oil extracted from jatropha seeds and the potential of seed residues as a heat provider. Bioenergy Res. 2021, 14, 1207–1222. [Google Scholar] [CrossRef]
- Abitogun, A.; Alademeyin, O.J.; Oloye, D. Extraction and characterization of castor seed oil. Internet J. Nutr. Wellness 2008, 8, 43–52. [Google Scholar]
- Hindi, S.S.; Dawoud, U.M.; Asiry, K.A. Bioplastic floss of a novel microwave-thermospun shellac: Synthesis and bleaching for some dental applications. Polymers 2022, 15, 142. [Google Scholar] [CrossRef] [PubMed]
- Hindi, S.S.; Dawoud, U.M.; Ismail, I.M.; Asiry, K.A.; Ibrahim, O.H.; Al-Harthi, M.A.; Mirdad, Z.M.; Al-Qubaie, A.I.; Shiboob, M.H.; Almasoudi, N.M.; et al. A novel microwave hot pressing machine for production of fixed oils from different biopolymeric structured tissues. Polymers 2023, 15, 2254. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Ashraf, M.; Ali, Q.; Anwar, F.; Hussain, A.I. Composition of leaf essential oil of Eucalyptus camaldulensis. Asian J. Chem. 2010, 22, 1779–1786. [Google Scholar]
- Paudyal, M.P.; Rajbhandari, M.; Basnet, P.; Yahara, S.; Gewali, M.B. Quality assessment of the essential oils from Nardostachys jatamansi (d. Don) dc and Nardostachys chinensis batal obtained from Kathmandu valley market. Sci. World 2012, 10, 13–16. [Google Scholar] [CrossRef]
- Li, H.; Madden, J.L. Analysis of leaves oils from a Eucalyptus species Trial. Biochem. Syst. Ecol. 1995, 23, 167–177. [Google Scholar] [CrossRef]
- Silvestre, A.J.D.; Cavaleiro, J.A.S.; Delmond, B.; Filliatre, C.; Bourgeois, G. Analysis of the variation of the essential oil composition of Eucalyptus globulus Labill from Portugal using multivariate statistical analysis. Ind. Crops Prod. 1997, 6, 27–33. [Google Scholar] [CrossRef]
- Song, A.; Wang, Y.; Liu, Y. Study on the chemical constituents of the essential oil of the leaves of Eucalyptus globulus Labill from China. Asian J. Trad. Med. 2009, 4, 134–140. [Google Scholar]
- Joshi, A.; Sharma, A.; Bachheti, R.; Pandey, D.P. A Comparative study of the chemical composition of the essential oil from Eucalyptus globulus growing in Dehradun (India) and around the world. Orient. J. Chem. 2016, 32, 331–340. [Google Scholar] [CrossRef]
- ASTM D 2395-83; Specific Gravity of Wood and Wood–Base Materials. ASTM: Philadelphia, PA, USA, 2021.
- ASTM D 5768-02; Determination of Iodine Value of Tall Oil Fatty Acids. ASTM: Philadelphia, PA, USA, 2022.
- ASTM D 5558-95; Standard Test Method for Determination of the Saponification Value of Fats and Oils. ASTM: Philadelphia, PA, USA, 2023. Available online: https://www.astm.org/d5558-95r23.html (accessed on 11 February 2025).
- ASTM D1980-87; Standard Test Method for Acid Value of Fatty Acids and Polymerized Fatty Acids. ASTM: Philadelphia, PA, USA, 1998. Available online: https://cdn.standards.iteh.ai/samples/3672/b80803ddcb364ac38e904f1000b4555b/ASTM-D1980-87-1998-.pdf (accessed on 11 March 2025).
- Hindi, S.S.; Dawoud, U. Characterization of hot pressed-fixed oil extracted from Ricinus communis L. Seeds. Int. J. Innov. Res. Technol. Sci. Eng. 2019, 8, 10172–10191. [Google Scholar]
- Thomas, A.; Matthäus, B.; Fiebig, H.-J. Fats and fatty oils. Ullmann’s Encycl. Ind. Chem. 2015, 1–84. [Google Scholar]
- Omari, A.; Mgani, Q.A.; Mubofu, E.B. Fatty acid profile and physico-chemical parameters of castor oils in Tanzania. Green Sustain. Chem. 2015, 5, 154–163. [Google Scholar] [CrossRef]
- Silva, R.A.C.d.; Lemos, T.L.G.d.; Ferreira, D.A.; Monte, F.J.Q. Chemical study of the seeds of Ximenia americana: Analysis of methyl esters by gas chromatography coupled to mass spectrometry. J. Anal. Pharm. Res. 2018, 7, 70–73. [Google Scholar]
- Merela, M.; Thaler, N.; Balzano, A.; Plavčak, D. Optimal surface preparation for wood anatomy research of invasive species by scanning electron microscopy. Wood Ind. Drv. Ind. 2020, 71, 117–127. [Google Scholar] [CrossRef]
- Wibowo, A.A.; Suryandari, A.S.; Naryono, E.; Pratiwi, V.M.; Suharto, M.; Adiba, N. Encapsulation of clove oil within ca-alginate-gelatine complex: Effect of process variables on encapsulation efficiency. J. Tek. Kim. Lingkung. 2021, 5, 71–77. [Google Scholar] [CrossRef]
- Hindi, S.S.; Bakhashwain, A.A.; El-Feel, A. Physico-chemical characterization of some Saudi lignocellulosic natural resources and their suitability for fiber production. J. King Abdulaziz Univ. Meteorol. Environ. Arid. Land Agric. Sci. 2010, 21, 45–55. [Google Scholar]
- Immaroh, N.Z.; Kuliahsari, D.E.; Nugraheni, S.D. Review: Eucalyptus globulus essential oil extraction method. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 12103. [Google Scholar] [CrossRef]
- Emara, K.S.; Shalaby, A.E. Seasonal variation of fixed and volatile oil percentage of four Eucalyptus spp. related to lamina anatomy. Afr. J. Plant Sci. 2011, 5, 353–359. [Google Scholar]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. Essential oils from different plant parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a source of 1,8-cineole and their bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef]
- Achmad, H.; Rana, H.; Fadilla, I.; Fajar, A.; Manurung, R.; Abduh, Y. Determination of yield, productivity and chemical composition of Eucalyptus oil from different species and locations in Indonesia. Chem. Nat. Resour. Eng. J. 2018, 1, 36–49. [Google Scholar]
- Abed, K.M.; Naife, T.M. Extraction of essential oil from Iraqi Eucalyptus camadulensis leaves by water distillation methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 012163. [Google Scholar] [CrossRef]
- Lainez-Cerón, E.; López-Malo, A.; Palou, E.; Ramírez-Corona, N. Dynamic performance of optimized microwave assisted extraction to obtain Eucalyptus essential oil: Energy requirements and environmental impact. Int. J. Food Eng. 2022, 18, 129–142. [Google Scholar] [CrossRef]
- Mahfud, M.; Masum, Z.; Bhuana, D.S.; Altway, A.; Yuniati, Y. A comparison of essential oil extraction from the leaves of lemongrass (Cymbopogon nardus L.) using two microwave-assisted methods. J. Appl. Eng. Sci. 2022, 20, 881–888. [Google Scholar] [CrossRef]
- Iswahyono; Saleh, A.S.; Djamila, S.; Bahariawan, A.; Komariah, L. The design and build of ohmic heated hydro distillation for the essential oil extraction of eucalyptus leaves. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012017. [Google Scholar] [CrossRef]
- Abdul-Majeed, B.A.; Hassan, A.A.; Kurji, B.M. Extraction of oil from Eucalyptus camaldulensis using water distillation method. Iraqi J. Chem. Pet. Eng. 2013, 14, 7–12. [Google Scholar] [CrossRef]
- Javed, S.; Bibi, A.; Shoaib, A.; Perveen, S.; Ferdosi, M.F.H. Essential oil of Eucalyptus citriodora: Physio-chemical analysis, formulation with hand sanitizer gel and antibacterial activity. Adv. Life Sci. 2022, 9, 510–515. [Google Scholar]
- Sarıbıyık, O.Y.; Özcanlı, M.; Hasan Serin, H.; Serin, S.; Aydın, K. Biodiesel production from Ricinus communis oil and its blends with soybean biodiesel. Stroj. Vestn.-J. Mech. Eng. 2010, 56, 811–816. [Google Scholar] [CrossRef]
- Uzoh, C.F.; Nwabanne, J.T.; Uzoh, C.F.; Nwabanne, J.T. Investigating the effect of catalyst type and concentration on the functional group conversion in castor seed oil alkyd resin production. Adv. Chem. Eng. Sci. 2016, 6, 190–200. [Google Scholar] [CrossRef]
- Muzenda, E.; Kabuba, J.; Mdletye, P.; Belaid, M. Optimization of Process Parameters for Castor Oil Production; Lecture Notes in Engineering and Computer Science; Newswood Limited: Hong Kong, China, 2012; pp. 1586–1589. [Google Scholar]
- Odoom, W.; Edusei, V.O. Evaluation of saponification value, Iodine value and insoluble impurities in coconut oils from Jomoro District of the Western Region of Ghana. Asian J. Agric. Food Sci. 2015, 3. [Google Scholar]
- Goldbeck, J.C.; do Nascimento, J.E.; Jacob, R.G.; Fiorentini, A.M.; da Silva, W.P. Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Viturro, C.I.; Molina, A.C.; Heit, C.I. Volatile components of Eucalyptus globulus Labill from Jujuy, Argentina. J. Essent. Oil Res. 2003, 15, 206–208. [Google Scholar] [CrossRef]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Walid, K.; Mohamed, S.B. Quality assessment of the essential oil from Eucalyptus globulus Labill of Blida (Algeria) origin. Int. Lett. Chem. Phys. Astron. 2014, 36, 303–315. [Google Scholar] [CrossRef]
- Lainez-Cerón, E.; Jiménez-Munguía, M.T.; López-Malo, A.; Ramírez-Corona, N. Effect of process variables on heating profiles and extraction mechanisms during hydrodistillation of eucalyptus essential oil. Heliyon 2021, 7, e08234. [Google Scholar] [CrossRef]
- Tsiri, D.; Kretsi, O.; Chinou, I.B.; Spyropoulos, C.G. Composition of fruit volatiles and annual changes in the volatiles of leaves of Eucalyptus camaldulensis Dehn. growing in Greece. Flavour Fragr. J. 2003, 18, 244–247. [Google Scholar] [CrossRef]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Totté, J.; Pieters, L.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Batista-Pereira, L.G.; Fernandes, J.B.; Corrêa, A.G.; da Silva, M.F.G.F.; Vieira, P.C. Electrophysiological responses of Eucalyptus Brown Looper Thyrinteina arnobia to essential oils of seven Eucalyptus species. J. Braz. Chem. Soc. 2006, 17, 555–561. [Google Scholar] [CrossRef]
- Coppen, J.J.W. Eucalyptus: The Genus Eucalyptus, 1st ed.; CRC Press: London, UK, 2002. [Google Scholar]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.H.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (Northeast Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef] [PubMed]
- Sahi, N.M. Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1256–1270. [Google Scholar]
- Darshan, S.; Doreswamy, R. Patented antiinflammatory plant drug development from traditional medicine. Phytother. Res. 2004, 18, 343–357. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Švedienė, J.; Raudonienė, V.; Paškevičius, A. α-Terpinyl acetate: Occurrence in essential oils bearing thymus pulegioides, phytotoxicity, and Antimicrobial Effects. Molecules 2021, 26, 1065. [Google Scholar] [CrossRef]
- Zhang, J.; Luan, D. Microwave heating characteristics on lipid quality in sterilized rainbow trout (Oncorhynchus mykiss) using designed heating processing. Foods 2024, 13, 2727. [Google Scholar] [CrossRef]
- Luo, T.; Ninan, N.; Truong, V.K.; He, S.; Alhaji, J.H.; Binobead, M.A. Impact of microwave processing and high-pressure processing on omega-3 fatty acid-enriched snack of microalgae (Nannochloropsis sp.)–cocoa balls. Inter. J. Food Sci. Technol. 2025, 60, vvaf005. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Hirakawa, Y.; Mizushina, Y. Microwave roasting effcts on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Comp. Anal. 2006, 19, 330–339. [Google Scholar] [CrossRef]
- Uquiche, E.; Jeréz, M.; Ortíz, J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol.). Innov. Food Sci. Emerg. Technol. 2008, 9, 495–500. [Google Scholar] [CrossRef]
- Rakesh, V.; Seo, Y.; Datta, A.K.; McCarthy, K.L.; McCarthy, M.J. Heat transfer during microwave combination heating: Computational modelling and MRI experiments. AIChE J. 2010, 56, 2468–2478. [Google Scholar] [CrossRef]
- Hindi, S.S.; Dawoud, U.M. Fenton Reactor with Gaseous Agitation. U.S. Patent 11,136,715, 24 May 2022. [Google Scholar]
- Watanabe, S.; Karakawa, M.; Hashimoto, O. Temperature of a heated material in a microwave oven considering change of complex relative permittivity. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 798–801. [Google Scholar]
- Perea-Flores, M.J.; Chanona-Pérez, J.J.; Garibay-Febles, V.; Calderón-Dominguez, G.; Terrés-Rojas, E.; Mendoza-Pérez, J.A.; Herrera-Bucio, R. Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis). Ind. Crops Prod. 2011, 34, 1057–1065. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Alirezalu, K.; Achachlouei, B.F. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 2011, 57, 72–75. [Google Scholar]
- Anonymous. National Library of Medicine, National Center for Biotechnology Information. PubChem (nih.gov). 2021. Available online: https://www.ncbi.nlm.nih.gov (accessed on 22 February 2025).
Parameter | Value | ||
---|---|---|---|
GC | Column dimension | Length | 30 m |
Internal diameters | 0.25 mm | ||
Solvent’s thickness film | 0.25 μm | ||
Column temperature | Initial temperature (IT) | 40 °C | |
Residence time (RT) of the IT | 4 min | ||
Maximum final temperature (MFT) | 220 °C | ||
RT of the MFT | 15 min | ||
Heating rate | 4 °C/min | ||
Injector temperature | 250 °C | ||
Injection volume | 1 μL | ||
Flow rate of the carrier gas (helium) | 20 mL/min | ||
Transfer temperature | 280 °C | ||
MS | Electron ionization (EI) mode | Negative chemical ionization | |
Ionization voltage | 70 eV | ||
Ion source temperature | 180 °C | ||
Scanning range | 50–600 Da |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hindi, S.S. Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool. Polymers 2025, 17, 1182. https://doi.org/10.3390/polym17091182
Hindi SS. Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool. Polymers. 2025; 17(9):1182. https://doi.org/10.3390/polym17091182
Chicago/Turabian StyleHindi, Sherif S. 2025. "Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool" Polymers 17, no. 9: 1182. https://doi.org/10.3390/polym17091182
APA StyleHindi, S. S. (2025). Fabricating Natural Polymeric Encapsules for Pest Control Uploaded with 1,8-Cineole Extracted from Eucalypt Ecotypes’ Leaves Using Innovative Microwave Tool. Polymers, 17(9), 1182. https://doi.org/10.3390/polym17091182