polymers-logo

Journal Browser

Journal Browser

Functional Polymeric Materials for Engineering and Environmental Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 5673

Special Issue Editors


E-Mail Website
Guest Editor
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Interests: functional materials for environmental and energy applications; mesoporous materials for gas absorption and organic molecules storage; combined cancer therapy including multi drug delivery and bio-imaging
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Chemistry, Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
Interests: Industrialization of cyclodextrin; pharmaceutical excipients for hydroxypropyl beta-cyclodextrin and sulfobutyl beta-cyclodextrin

Special Issue Information

Dear Colleagues,

Functional polymeric materials comprise a diverse family of novel molecular architectures which include conjugated porous polymers, organic–inorganic hybrid oligomeric/polymeric materials, supramolecular polymers and self-assembled networks, as well as metal-ligated polymers. Thus, the obtained polymeric systems have extensive applications across a wide array of advanced fields such as pollution prevention, battery materials, organic electronics, sensor devices, flexible displays, 3D and 4D printing of polymeric materials, drug delivery, and tissue engineering; they have also demonstrated potential for being integrated into soft robotics. 

This Special Issue invites submissions of papers in the following potential topics (the list is not exhaustive): 

  • Synthesis of polymeric materials;
  • Analysis of polymeric materials;
  • Conceptual and creative design of polymer-based devices;
  • Processing and performance of polymeric materials;
  • Functional polymeric materials. 

Prof. Dr. Huacheng Zhang
Dr. Jian Shen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer-based materials
  • synthesis, physics, and analysis
  • concept and creative design of polymer-based devices
  • functional polymeric materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 22949 KiB  
Article
Development of Sustainable Cement Asphalt Mortar Using Agricultural Waste-Derived Bio-Oil and Latex–Acrylic Polymers for Enhanced Durability
by Yeong-Min Kim, Kyungnam Kim and Tri Ho Minh Le
Polymers 2024, 16(22), 3210; https://doi.org/10.3390/polym16223210 - 19 Nov 2024
Viewed by 975
Abstract
Cement Asphalt Mortar (CAM) is widely applied in infrastructure, particularly in railways, bridge expansion joints, and pavements, due to its combination of cement’s load-bearing capacity and asphalt’s flexibility. Conventional CAM formulations, however, often encounter challenges such as extended setting times, high shrinkage, and [...] Read more.
Cement Asphalt Mortar (CAM) is widely applied in infrastructure, particularly in railways, bridge expansion joints, and pavements, due to its combination of cement’s load-bearing capacity and asphalt’s flexibility. Conventional CAM formulations, however, often encounter challenges such as extended setting times, high shrinkage, and limited durability under extreme environmental conditions. This study addresses these limitations by integrating bio-oil and polymer additives to enhance both the sustainability and performance of CAM mixtures. CAM mixtures were evaluated with cement-to-asphalt emulsion (C/AE) mass ratios of 75:25 and 50:50, incorporating bio-oil contents of 2% and 4% by mass and latex–acrylic polymer proportions ranging from 1% to 2% by mass. The optimized mix design, with a 75:25 cement-to-asphalt emulsion (C/AE) mass ratio, 2% bio-oil, and 1.5% polymer, improved flowability by 25%. This formulation achieved a flow diameter of approximately 205 mm and reduced the flow time to 72 s. Compressive strength tests indicated that this formulation reached an early-stage strength of 10.45 MPa (a 20.8% improvement over the control) and a 28-day strength of 24.18 MPa. Thermal stability tests at 45 °C demonstrated that the optimized CAM retained 86.6% of its compressive strength, compared to a 25% reduction in unmodified mixtures. Chemical resistance assessments in 5% sulfuric acid and 5% sodium hydroxide solutions showed strength retention of 95.03% and 91.98%, respectively, outperforming control mixtures by 17% and 13%. SEM examination revealed a dense, cohesive microstructure, reducing shrinkage to 0.01% from 0.15% in the control. These findings underscore the potential of bio-oil and latex–acrylic polymers to improve the performance and sustainability of CAM mixtures, making them well suited for resilient, rapid-setting infrastructure applications. Full article
Show Figures

Figure 1

12 pages, 2078 KiB  
Article
Cotton Fabric-Reinforced Hydrogels with Excellent Mechanical and Broad-Spectrum Photothermal Antibacterial Properties
by Xiangnan Yuan, Jun Zhang, Jiayin Shi, Wenfu Liu, Andreii S. Kritchenkov, Sandra Van Vlierberghe, Lu Wang, Wanjun Liu and Jing Gao
Polymers 2024, 16(10), 1346; https://doi.org/10.3390/polym16101346 - 9 May 2024
Cited by 5 | Viewed by 1595
Abstract
Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide [...] Read more.
Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment. Full article
Show Figures

Figure 1

19 pages, 4908 KiB  
Article
Polyvinyl Alcohol–Citric Acid: A New Material for Green and Efficient Removal of Cationic Dye Wastewater
by Ye He, Yangyang Zheng, Xia Liu, Chang Liu, Huacheng Zhang and Jie Han
Polymers 2023, 15(22), 4341; https://doi.org/10.3390/polym15224341 - 7 Nov 2023
Cited by 3 | Viewed by 2504
Abstract
The citric acid (CA) cross-linked polyvinyl alcohol (PVA) adsorbent, PVA–CA, was efficiently synthesized and its application to the removal of dyes in water, particularly the cationic dye, methylene blue (MB), was thoroughly investigated. The morphologies and physiochemical characteristics of PVA–CA were fully characterized [...] Read more.
The citric acid (CA) cross-linked polyvinyl alcohol (PVA) adsorbent, PVA–CA, was efficiently synthesized and its application to the removal of dyes in water, particularly the cationic dye, methylene blue (MB), was thoroughly investigated. The morphologies and physiochemical characteristics of PVA–CA were fully characterized by SEM, FT-IR, XRD, TGA, BET, and XPS. The effects of contact time, adsorbent dosage, MB concentration, solution pH, and temperature on the adsorption performance were compared using controllable methods. The maximum adsorption capacity of PVA–CA was 709.86 mg g−1 and the removal rate remained high through several adsorption–desorption cycles, demonstrating that such a composite absorbent has a good adsorption performance and recoverability. Further analysis by the density functional theory (DFT) showed that van der Waals interactions, electrostatic interactions and hydrogen bonding interactions between PVA–CA and MB played significant roles in the adsorption mechanism. Full article
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 4447 KiB  
Review
Starch Hydrogels for Slow and Controlled-Release Fertilizers: A Review
by Andrés Felipe Chamorro, Manuel Palencia and Enrique Miguel Combatt
Polymers 2025, 17(8), 1117; https://doi.org/10.3390/polym17081117 - 20 Apr 2025
Viewed by 192
Abstract
Fertilizers are widely used to increase agricultural productivity and ensure food security. However, their excessive use negatively impacts the environment, as a large portion is lost through leaching, degradation, and evaporation. Starch-based hydrogels (SHs) offer a promising alternative to mitigate these environmental effects [...] Read more.
Fertilizers are widely used to increase agricultural productivity and ensure food security. However, their excessive use negatively impacts the environment, as a large portion is lost through leaching, degradation, and evaporation. Starch-based hydrogels (SHs) offer a promising alternative to mitigate these environmental effects by enabling the controlled release of nutrients. SHs are biodegradable, non-toxic, and biocompatible, making them attractive for agricultural applications such as soil remediation and fertilizer delivery. These materials consist of crosslinked, three-dimensional networks with high water absorption capacity. Their effectiveness in nutrient delivery depends on the synthesis method, nutrient source, and environmental conditions. While the literature on SHs is growing, most studies focus on laboratory-scale production, which limits their broader application in agriculture. This review aims to consolidate current knowledge on SHs and identify research gaps to guide the development of more efficient and environmentally friendly SH-based fertilizers. It provides an overview of SH formation methods, including graft copolymerization, chemical crosslinking, and physical interactions. Additionally, the review highlights SH applications in controlled fertilizer release, discussing encapsulation capacity, large-scale production techniques, and nutrient delivery in aqueous media, soils, seeds, and plants. Full article
Show Figures

Graphical abstract

Back to TopTop