Carbon Sequestration and Stabilization in Forest and Bamboo Ecosystems

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Ecology".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 6279

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, China
Interests: forest carbon sequestration; bamboo carbon sequestration; forest sustainable development

E-Mail Website
Guest Editor
College of Environmental and Resources, Zhejiang A&F University, Hangzhou 311300, China
Interests: forest disturbance detection; remote sensing monitoring vegetation structure and function changes; modeling of terrestrial ecosystem carbon, nitrogen, and water cycles
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, China
Interests: forest carbon sink measurement and monitoring; forest product carbon footprint assessment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In this special issue, we delve into the intricate mechanisms of carbon sequestration and stabilization within forest and bamboo ecosystems, within the broader context of environmental protection and the fight against climate change. This edition offers a comprehensive analysis of carbon storage dynamics and related processes within these ecosystems, considering the influences of climate change, human interventions, and natural disturbances. The aim is to underscore the significance of effective forest management, the role of forest soil in greenhouse gas emissions, and ecosystem carbon sequestration as crucial components in mitigating climate change impacts.

Employing a multidisciplinary approach, this issue thoroughly explores diverse methods and models linked to the carbon sequestration potential inherent in forests and bamboo. Additionally, it examines their ecological implications, seeking to advance sustainable environmental practices.

Prof. Yongjun Shi
Prof. Dr. Guangsheng Chen
Dr. Lin Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon sequestration
  • forest ecosystems
  • bamboo ecosystems
  • climate change mitigation
  • carbon capture and storage
  • ecological impact assessment
  • sustainable forest management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2453 KB  
Article
Research on Forest Carbon Sequestration and Its Economic Valuation: A Case Study of the Zixi Mountain Nature Reserve, Chuxiong Prefecture
by Mengxue Pu, Shaohui Yang, Aimei Chen and Zhihua Deng
Plants 2025, 14(17), 2746; https://doi.org/10.3390/plants14172746 - 2 Sep 2025
Viewed by 556
Abstract
Improving the precision of forest vegetation carbon stock estimation is essential for scientifically evaluating its economic value and ecological benefits. This study aims to investigate the impact of different estimation methods on carbon stock and its economic value. Taking the forest vegetation of [...] Read more.
Improving the precision of forest vegetation carbon stock estimation is essential for scientifically evaluating its economic value and ecological benefits. This study aims to investigate the impact of different estimation methods on carbon stock and its economic value. Taking the forest vegetation of the Zixi Mountain Nature Reserve as the research object, the carbon stock of the arbor layer was estimated using four approaches: the variable biomass expansion factor method, the biomass expansion factor method, the volume conversion method, and the continuous function method of the biomass conversion factor. The carbon stocks of economic forests and shrublands were estimated using the average biomass method. The economic value of forest carbon storage was then evaluated through the market value method and the optimal pricing approach for forest carbon sinks. The results revealed no significant differences among the four estimation methods. The estimated arbor forest carbon stocks were 692,548.39 tC, 672,599.83 tC, 673,161.07 tC, and 400,369.17 tC, respectively, with an overall average of 609,669.62 tC. The biomass expansion factor method and the volume conversion method produce the most consistent results. The corresponding relative errors were 13.59%, 10.32%, 10.41%, and −34.33%, respectively. The continuous function method of the biomass conversion factor exhibited the greatest variability, mainly due to the influence of Pinus yunnanensis parameters. Among all methods, the biomass expansion factor method yielded the smallest relative error, making it the most suitable for estimating arbor carbon stocks in the study area. The total average economic value of forest carbon storage in the region was estimated at CNY 58.09 million. Among all forest types, Pinus yunnanensis contributed the highest carbon value, totaling CNY 50.48 million. In terms of economic value per unit area, Pinus armandii ranked first, with CNY 11,418.92 per hectare. Among different age groups of arbor forests, middle-aged stands had the highest carbon sequestration value, reaching CNY 36.87 million. Across all functional zones, the core zone showed the greatest economic value at CNY 29.34 million. Enhancing forest resource protection to maximize both carbon sink capacity and economic returns, as well as promoting forest carbon trading, can bring additional economic benefits to Southwest China while contributing to the achievement of the national “dual carbon” goals. Full article
Show Figures

Figure 1

12 pages, 6504 KB  
Article
Abandonment Leads to Changes in Forest Structural and Soil Organic Carbon Stocks in Moso Bamboo Forests
by Yaowen Xu, Jiejie Jiao, Chuping Wu, Ziqing Zhao, Xiaogai Ge, Ge Gao, Yonghui Cao and Benzhi Zhou
Plants 2024, 13(16), 2301; https://doi.org/10.3390/plants13162301 - 19 Aug 2024
Cited by 2 | Viewed by 1579
Abstract
The important role of soil carbon pools in coping with climate change has become widely recognized. Moso bamboo (Phyllostachys pubescens) is an economically important bamboo species in South China; however, owing to factors such as rising labor costs and increasingly stringent [...] Read more.
The important role of soil carbon pools in coping with climate change has become widely recognized. Moso bamboo (Phyllostachys pubescens) is an economically important bamboo species in South China; however, owing to factors such as rising labor costs and increasingly stringent environmental policies, Moso bamboo forests have recently been abandoned. The present study aimed to investigate the effects of abandonment on structural factors and soil organic carbon (SOC) stocks in Moso bamboo forests. We investigated Moso bamboo forests subjected to intensive management or abandonment for different durations and measured forest structural characteristics, mineral properties, soil nutrients, and other soil properties. Although abandonment did not significantly affect the height and diameter at breast height, it increased culm densities, biomass, and SOC stocks. The drivers of SOC stocks depended on soil depth and were mainly controlled by carbon decomposition mediated by soil properties. In the topsoil, mineral protection and soil total nitrogen (TN) exerted significant effects on SOC stocks; in the subsoil, soil TN was the main driver of SOC stocks. As the controlling factors of SOC stocks differed between the subsoil and topsoil, more attention should be paid to the subsoil. Overall, these findings refine our understanding of the structural characteristics and SOC stocks associated with Moso bamboo forest abandonment, serving as a reference for the follow-up management of these forests. Full article
Show Figures

Figure 1

23 pages, 6746 KB  
Article
Effects of Fertilizer Application Intensity on Carbon Accumulation and Greenhouse Gas Emissions in Moso Bamboo Forest–Polygonatum cyrtonema Hua Agroforestry Systems
by Huiying Chen, Xuekun Cheng, Xingfa Zhang, Haitao Shi, Jiahua Chen, Ruizhi Xu, Yangen Chen, Jianping Ying, Yixin Wu, Yufeng Zhou and Yongjun Shi
Plants 2024, 13(14), 1941; https://doi.org/10.3390/plants13141941 - 15 Jul 2024
Cited by 2 | Viewed by 1561
Abstract
Agroforestry management has immense potential in enhancing forest carbon sequestration and mitigating climate change. Yet the impact and response mechanism of compound fertilization rates on carbon sinks in agroforestry systems remain ambiguous. This study aims to elucidate the impact of different compound fertilizer [...] Read more.
Agroforestry management has immense potential in enhancing forest carbon sequestration and mitigating climate change. Yet the impact and response mechanism of compound fertilization rates on carbon sinks in agroforestry systems remain ambiguous. This study aims to elucidate the impact of different compound fertilizer rates on soil greenhouse gas (GHG) emissions, vegetation and soil organic carbon (SOC) sinks, and to illustrate the differences in agroforestry systems’ carbon sinks through a one-year positioning test across 12 plots, applying different compound fertilizer application rates (0 (CK), 400 (A1), 800 (A2), and 1600 (A3) kg ha−1). The study demonstrated that, after fertilization, the total GHG emissions of A1 decreased by 4.41%, whereas A2 and A3 increased their total GHG emissions by 17.13% and 72.23%, respectively. The vegetation carbon sequestration of A1, A2, and A3 increased by 18.04%, 26.75%, and 28.65%, respectively, and the soil organic carbon sequestration rose by 32.57%, 42.27% and 43.29%, respectively. To sum up, in contrast with CK, the ecosystem carbon sequestration climbed by 54.41%, 51.67%, and 0.90%, respectively. Our study suggests that rational fertilization can improve the carbon sink of the ecosystem and effectively ameliorate climate change. Full article
Show Figures

Figure 1

19 pages, 3215 KB  
Article
Responses of Soil Carbon and Microbial Residues to Degradation in Moso Bamboo Forest
by Shuhan Liu, Xuekun Cheng, Yulong Lv, Yufeng Zhou, Guomo Zhou and Yongjun Shi
Plants 2024, 13(11), 1526; https://doi.org/10.3390/plants13111526 - 31 May 2024
Cited by 2 | Viewed by 1572
Abstract
Moso bamboo (Phyllostachys heterocycla cv. Pubescens) is known for its high capacity to sequester atmospheric carbon (C), which has a unique role to play in the fight against global warming. However, due to rising labor costs and falling bamboo prices, many [...] Read more.
Moso bamboo (Phyllostachys heterocycla cv. Pubescens) is known for its high capacity to sequester atmospheric carbon (C), which has a unique role to play in the fight against global warming. However, due to rising labor costs and falling bamboo prices, many Moso bamboo forests are shifting to an extensive management model without fertilization, resulting in gradual degradation of Moso bamboo forests. However, many Moso bamboo forests are being degraded due to rising labor costs and declining bamboo timber prices. To delineate the effect of degradation on soil microbial carbon sequestration, we instituted a rigorous analysis of Moso bamboo forests subjected to different degradation durations, namely: continuous management (CK), 5 years of degradation (D-5), and 10 years of degradation (D-10). Our inquiry encompassed soil strata at 0–20 cm and 20–40 cm, scrutinizing alterations in soil organic carbon(SOC), water-soluble carbon(WSOC), microbial carbon(MBC)and microbial residues. We discerned a positive correlation between degradation and augmented levels of SOC, WSOC, and MBC across both strata. Furthermore, degradation escalated concentrations of specific soil amino sugars and microbial residues. Intriguingly, extended degradation diminished the proportional contribution of microbial residuals to SOC, implying a possible decline in microbial activity longitudinally. These findings offer a detailed insight into microbial C processes within degraded bamboo ecosystems. Full article
Show Figures

Figure 1

Back to TopTop