New Strategies for the Control of Plant-Parasitic Nematodes

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 12095

Special Issue Editor


E-Mail Website
Guest Editor
Department of Science of Crop Production, Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece
Interests: nematology; plant extracts; crop protection; chemical control; biological control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant-parasitic nematodes pose a significant threat to global agriculture, causing substantial yield losses and economic damage. It is imperative to develop effective and sustainable methods to combat these pests while reducing the reliance on chemical nematicides.

This Special Issue aims to shed light on cutting-edge research and novel approaches in the control of plant-parasitic nematodes. We encourage submissions exploring not only conventional strategies but also groundbreaking techniques that efficiently combat nematode-related challenges while minimizing ecological risks. Emphasis will be placed on advances in integrated pest management (IPM), biological control, host resistance, chemical alternatives, and sustainable agronomic practices. Contributions may cover a broad range of topics including, but not limited to, the following:

  1. Emerging trends and technologies in nematode management;
  2. Efficacy and limitations of chemical control methods;
  3. Utilization of natural enemies for biological control;
  4. Genetic approaches for engineering nematode-resistant crops;
  5. Sustainable farming practices that mitigate nematode damage;
  6. Underground interaction mechanisms between plants and nematodes;
  7. Innovative nematode diagnostic techniques.

We invite you to contribute a review or research article to this Special Issue and help shape the future of nematode management.

Dr. Ioannis Giannakou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant-parasitic nematodes
  • nematode management
  • chemical control
  • biological control
  • nematode-resistant
  • crop protection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 6567 KiB  
Communication
Meloidogyne incognita-Induced Giant Cells in Tomato and the Impact of Acetic Acid
by Christianna Meidani, Konstantinos Telioglanidis, Eleni Giannoutsou, Nikoleta Ntalli and Ioannis Dimosthenis S. Adamakis
Plants 2025, 14(7), 1015; https://doi.org/10.3390/plants14071015 - 24 Mar 2025
Viewed by 396
Abstract
The plant parasitic root-knot nematodes of the species Meloidogyne incognita infect many cultivated plants, one of which is the tomato (Solanum lycopersicum). To be fed, M. incognita selects unique feeding sites inside the root and induces the formation of large galls [...] Read more.
The plant parasitic root-knot nematodes of the species Meloidogyne incognita infect many cultivated plants, one of which is the tomato (Solanum lycopersicum). To be fed, M. incognita selects unique feeding sites inside the root and induces the formation of large galls (knots) encompassing the so-called giant cells (GCs). In the present study, a comparative analysis of the GCs/root cell and cell wall components between M. incognita-infected and uninfected tomato plants and plants pre-treated with the plant biostimulant and nematicide acetic acid (AA) was carried out. Pectin, hemicellulose and extensin epitopes were detected in tomato root sections. M. incognita-induced GCs in tomato roots had cell walls with arabinans, unesterified/methylesterified homogalacturonans and xyloglucans, but were devoid of mannans and extensins. Interestingly, the above epitope distribution also differed in root sections made near the formed root knot, proximal to the root cap. Moreover, it seemed that AA was able to induce the deposition of extensins in AA-treated, M. incognita-uninfected roots and hamper the GC development in AA-treated, M. incognita-infected roots. According to the above the AA, stimulates natural defense mechanisms in tomato, thus protecting it from nematode infestation. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

19 pages, 5655 KiB  
Article
Establishment of a Sensitive and Reliable Droplet Digital PCR Assay for the Detection of Bursaphelenchus xylophilus
by Yu Su, Xuedong Zhu, Haozheng Jing, Haiying Yu and Huai Liu
Plants 2024, 13(19), 2701; https://doi.org/10.3390/plants13192701 - 26 Sep 2024
Cited by 2 | Viewed by 1116
Abstract
Pine wilt disease (PWD), which poses a significant risk to pine plantations across the globe, is caused by the pathogenic agent Bursaphelenchus xylophilus, also referred to as the pine wood nematode (PWN). A droplet digital PCR (ddPCR) assay was developed for the [...] Read more.
Pine wilt disease (PWD), which poses a significant risk to pine plantations across the globe, is caused by the pathogenic agent Bursaphelenchus xylophilus, also referred to as the pine wood nematode (PWN). A droplet digital PCR (ddPCR) assay was developed for the quick identification of the PWN in order to improve detection sensitivity. The research findings indicate that the ddPCR assay demonstrated significantly higher analysis sensitivity and detection sensitivity in comparison to traditional quantitative PCR (qPCR). However, it had a more limited dynamic range. High specificity was shown by both the ddPCR and qPCR techniques in the diagnosis of the PWN. Assessments of reproducibility revealed that ddPCR had lower coefficients of variation at every template concentration. Inhibition tests showed that ddPCR was less susceptible to inhibitors. There was a strong linear association between standard template measurements obtained using ddPCR and qPCR (Pearson correlation = 0.9317; p < 0.001). Likewise, there was strong agreement (Pearson correlation = 0.9348; p < 0.001) between ddPCR and qPCR measurements in the evaluation of pine wood samples. Additionally, wood samples from symptomatic (100% versus 86.67%) and asymptomatic (31.43% versus 2.9%) pine trees were diagnosed with greater detection rates using ddPCR. This study’s conclusions highlight the advantages of the ddPCR assay over qPCR for the quantitative detection of the PWN. This method has a lot of potential for ecological research on PWD and use in quarantines. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

17 pages, 3977 KiB  
Article
Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus
by Julio Cruz-Arévalo, Víctor M. Hernández-Velázquez, Alexandre Toshirrico Cardoso-Taketa, Manases González-Cortazar, José E. Sánchez-Vázquez, Guadalupe Peña-Chora, Edgar Villar-Luna and Liliana Aguilar-Marcelino
Plants 2024, 13(13), 1777; https://doi.org/10.3390/plants13131777 - 27 Jun 2024
Cited by 1 | Viewed by 1634
Abstract
Pleurotus ostreatus, an edible mushroom widely consumed worldwide, generates a by-product known as spent mushroom substrate (SMS). This material has demonstrated biological activity against agricultural crop pathogens. In this study, we evaluated the nematocidal effectiveness of hydroalcoholic extracts (T5, T2, AT5, and [...] Read more.
Pleurotus ostreatus, an edible mushroom widely consumed worldwide, generates a by-product known as spent mushroom substrate (SMS). This material has demonstrated biological activity against agricultural crop pathogens. In this study, we evaluated the nematocidal effectiveness of hydroalcoholic extracts (T5, T2, AT5, and AT2) derived from SMS of P. ostreatus against (J2) of the phytonematode Nacobbus aberrans and assessed their potential toxicity towards the non-target nematode Panagrellus redivivus. Among these extracts, AT5 exhibited the highest efficacy against N. aberrans and was the least toxic against P. redivivus. Liquid–liquid partitioning yielded the AQU fraction, which showed significant nematocidal activity against J2 (75.69% ± 8.99 mortality), comparable to chitosan. The GC-MS analysis revealed the presence of several compounds, including palmitic acid, linoleic acid, and 2,4-Di-tert-butylphenol. These findings are consistent with studies confirming the antagonistic effectiveness of these compounds against phytonematodes. Additionally, all extracts exhibited toxicity against P. redivivus, with T2 being the most toxic. Our findings demonstrate that while the AT5 extract displays antagonistic effectiveness against both N. aberrans and P. redivivus, it was the least toxic among the extracts tested. Thus, SMS of P. ostreatus holds potential as a source of nematocidal compounds, which could offer significant benefits for agricultural pest control. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

21 pages, 7709 KiB  
Article
Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea
by Mir Akhtar Hussain, Ghazala Parveen, Aashaq Hussain Bhat, Zubair Altaf Reshi, Farid S. Ataya and Zaffar A. Handoo
Plants 2024, 13(13), 1743; https://doi.org/10.3390/plants13131743 - 24 Jun 2024
Cited by 6 | Viewed by 2031
Abstract
Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating the impact of simultaneous infection by Meloidogyne arenaria (root-knot nematode) and Macrophomina phaseolina (root-rot fungus) in cowpea plants. The characterization of ZnO NPs was carried out through various analytical techniques, including UV–visible spectrophotometry, Powder-XRD analysis, FT-IR spectroscopy, and SEM-EDX analysis. The study confirmed the successful synthesis of ZnO NPs with a hexagonal wurtzite structure and exceptional purity. Under in vitro conditions, ZnO NPs exhibited significant nematicidal and antifungal activities. The mortality of M. arenaria juveniles increased with rising ZnO NP concentrations, and a similar trend was observed in the inhibition of M. phaseolina mycelial growth. SEM studies revealed physical damage to nematodes and structural distortions in fungal hyphae due to ZnO NP treatment. In infected cowpea plants, ZnO NPs significantly improved plant growth parameters, including plant length, fresh mass, and dry mass, especially at higher concentrations. Leghemoglobin content and the number of root nodules also increased after ZnO NP treatment. Additionally, ZnO NPs reduced gall formation and egg mass production by M. arenaria nematodes and effectively inhibited the growth of M. phaseolina in the roots. Furthermore, histochemical analyses demonstrated a reduction in oxidative stress, as indicated by decreased levels of reactive oxygen species (ROS) and lipid peroxidation in ZnO NP-treated plants. These findings highlight the potential of green-synthesized ZnO NPs as an eco-friendly and effective solution to manage disease complex in cowpea caused by simultaneous nematode and fungal infections. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 358 KiB  
Review
Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs
by Mahfouz M. M. Abd-Elgawad
Plants 2025, 14(7), 1004; https://doi.org/10.3390/plants14071004 - 23 Mar 2025
Viewed by 562
Abstract
Considerable losses are inflicted by plant-parasitic nematodes (PPNs) due to their obligate parasitism; serious damage occurs in many susceptible crops, and the parasites have a broad distribution worldwide. As most PPNs have a subterranean nature, the complexity of soils in the plant rhizosphere [...] Read more.
Considerable losses are inflicted by plant-parasitic nematodes (PPNs) due to their obligate parasitism; serious damage occurs in many susceptible crops, and the parasites have a broad distribution worldwide. As most PPNs have a subterranean nature, the complexity of soils in the plant rhizosphere and the structures and functions of the soil food webs necessitate a grasp of the relevant biotic/abiotic factors in order to ensure their effective control. Such factors frequently lead to the inconsistent performance and untapped activity of applied bionematicides, hindering efforts to develop reliable ones. Research efforts that take these factors into account to back the usage of these bionematicides by combining the disease-suppressive activities of two or more agricultural inputs are highlighted herein. These combinations should be designed to boost useful colonization in the rhizosphere, persistent expression of desirable traits under a wide range of soil settings, and/or antagonism to a larger number of plant pests/pathogens relative to individual applications. Relevant ecological/biological bases with specific settings for effective PPN management are exemplified. Determining the relative sensitivity or incompatibility of some biologicals entails studying their combinations and reactions. Such studies, as suggested herein, should be conducted on a case-by-case basis to avoid unsatisfactory outputs. These studies will enable us to accurately define certain outputs, namely, the synergistic, additive, neutral, and antagonistic interactions among the inputs. In optimizing the efficiencies of these inputs, researchers should consider their multi-functionality and metabolic complementarity. Despite previous research, the market currently lacks these types of safe and effective products. Hence, further explorations of novel integrated pest management plans that boost synergy and coverage to control multiple pathogens/pests on a single crop are required. Also, setting economic incentives and utilizing a standardized regulation that examines the authentic risks of biopesticides are still called for in order to ease cost-effective formulation, registration, farmer awareness, and usage worldwide. On the other hand, tank mixing that ensures legality and avoids physical and chemical agro-input-based incompatibilities can also provide superior merits. The end in view is the unraveling of the complexities of interactions engaged with in applying multiple inputs to develop soundly formulated, safe, and effective pesticides. Sophisticated techniques should be incorporated to overcome such complexities/limitations. These techniques would engage microencapsulation, nanopesticides, volatile organic compounds as signals for soil inhabitants, bioinformatics, and RNA-Seq in pesticide development. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
26 pages, 1115 KiB  
Review
Emerging Trends and Technologies Used for the Identification, Detection, and Characterisation of Plant-Parasitic Nematode Infestation in Crops
by Top Bahadur Pun, Roniya Thapa Magar, Richard Koech, Kirsty J. Owen and Dante L. Adorada
Plants 2024, 13(21), 3041; https://doi.org/10.3390/plants13213041 - 30 Oct 2024
Cited by 1 | Viewed by 2726
Abstract
Accurate identification and estimation of the population densities of microscopic, soil-dwelling plant-parasitic nematodes (PPNs) are essential, as PPNs cause significant economic losses in agricultural production systems worldwide. This study presents a comprehensive review of emerging techniques used for the identification of PPNs, including [...] Read more.
Accurate identification and estimation of the population densities of microscopic, soil-dwelling plant-parasitic nematodes (PPNs) are essential, as PPNs cause significant economic losses in agricultural production systems worldwide. This study presents a comprehensive review of emerging techniques used for the identification of PPNs, including morphological identification, molecular diagnostics such as polymerase chain reaction (PCR), high-throughput sequencing, meta barcoding, remote sensing, hyperspectral analysis, and image processing. Classical morphological methods require a microscope and nematode taxonomist to identify species, which is laborious and time-consuming. Alternatively, quantitative polymerase chain reaction (qPCR) has emerged as a reliable and efficient approach for PPN identification and quantification; however, the cost associated with the reagents, instrumentation, and careful optimisation of reaction conditions can be prohibitive. High-throughput sequencing and meta-barcoding are used to study the biodiversity of all tropical groups of nematodes, not just PPNs, and are useful for describing changes in soil ecology. Convolutional neural network (CNN) methods are necessary to automate the detection and counting of PPNs from microscopic images, including complex cases like tangled nematodes. Remote sensing and hyperspectral methods offer non-invasive approaches to estimate nematode infestations and facilitate early diagnosis of plant stress caused by nematodes and rapid management of PPNs. This review provides a valuable resource for researchers, practitioners, and policymakers involved in nematology and plant protection. It highlights the importance of fast, efficient, and robust identification protocols and decision-support tools in mitigating the impact of PPNs on global agriculture and food security. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

20 pages, 363 KiB  
Review
Upgrading Strategies for Managing Nematode Pests on Profitable Crops
by Mahfouz M. M. Abd-Elgawad
Plants 2024, 13(11), 1558; https://doi.org/10.3390/plants13111558 - 4 Jun 2024
Cited by 7 | Viewed by 2369
Abstract
Plant-parasitic nematodes (PPNs) reduce the high profitability of many crops and degrade their quantitative and qualitative yields globally. Traditional nematicides and other nematode control methods are being used against PPNs. However, stakeholders are searching for more sustainable and effective alternatives with limited side [...] Read more.
Plant-parasitic nematodes (PPNs) reduce the high profitability of many crops and degrade their quantitative and qualitative yields globally. Traditional nematicides and other nematode control methods are being used against PPNs. However, stakeholders are searching for more sustainable and effective alternatives with limited side effects on the environment and mankind to face increased food demand, unfavorable climate change, and using unhealthy nematicides. This review focuses on upgrading the pre-procedures of PPN control as well as novel measures for their effective and durable management strategies on economically important crops. Sound and effective sampling, extraction, identification, and counting methods of PPNs and their related microorganisms, in addition to perfecting designation of nematode–host susceptibility/resistance, form the bases for these strategies. Therefore, their related frontiers should be expanded to synthesize innovative integrated solutions for these strategies. The latter involve supplanting unsafe nematicides with a new generation of safe and reliable chemical nematicidal and bionematicidal alternatives. For better efficacy, nematicidal materials and techniques should be further developed via computer-aided nematicide design. Bioinformatics devices can reinforce the potential of safe and effective biocontrol agents (BCAs) and their active components. They can delineate the interactions of bionematicides with their targeted PPN species and tackle complex diseases. Also, the functional plan of nematicides based on a blueprint of the intended goals should be further explored. Such goals can currently engage succinate dehydrogenase, acetylcholinesterase, and chitin deacetylase. Nonetheless, other biochemical compounds as novel targets for nematicides should be earnestly sought. Commonly used nematicides should be further tested for synergistic or additive function and be optimized via novel sequential, dual-purpose, and co-application of agricultural inputs, especially in integrated pest management schemes. Future directions and research priorities should address this novelty. Meanwhile, emerging bioactivated nematicides that offer reliability and nematode selectivity should be advanced for their favorable large-scale synthesis. Recent technological means should intervene to prevail over nematicide-related limitations. Nanoencapsulation can challenge production costs, effectiveness, and manufacturing defects of some nematicides. Recent progress in studying molecular plant–nematode interaction mechanisms can be further exploited for novel PPN control given related topics such as interfering RNA techniques, RNA-Seq in BCA development, and targeted genome editing. A few recent materials/techniques for control of PPNs in durable agroecosystems via decision support tools and decision support systems are addressed. The capability and effectiveness of nematicide operation harmony should be optimized via employing proper cooperative mechanisms among all partners. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Back to TopTop