Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea
Abstract
:1. Introduction
2. Results
2.1. Characterization of Root-Knot Nematode and Root-Rot Fungus
2.2. Characterization of ZnO NPs and Their In Vitro Effects
2.2.1. UV–Visible Analysis
2.2.2. Powder-XRD Analysis
2.2.3. FT-IR
2.2.4. SEM-EDX
2.3. Effect of ZnO NPs on M. arenaria (J2) Mortality and M. phaseolina Growth under In Vitro Conditions
SEM Studies
2.4. Effect of Biosynthesized ZnO NPs on Infected Cowpea Plants
2.4.1. Effect on Plant Growth Parameters
2.4.2. Effect on Leghemoglobin and Root Nodules
2.4.3. Nematicidal and Antifungal Effect
2.5. Histochemical Localization and Quantification of ROS and Lipid Peroxidation
2.5.1. Localization and Quantification of Superoxide Anion (O2−)
2.5.2. Localization and Quantification of Hydrogen Peroxide (H2O2)
2.5.3. Oxidative Lipid Stress
2.6. SEM and Confocal Microscopy
3. Discussion
4. Materials and Methods
4.1. Chemicals and Plant Material
4.2. Preparation of Plant Leaf Extract
4.3. Biosynthesis of ZnO NPs
4.4. Characterization of ZnO NPs
4.5. Collection of Root-Rot Fungus, Nitrogen-Fixing Bacteria, and Root-Knot Nematode
4.6. In Vitro Studies
4.6.1. Antifungal Activity of ZnO Nanoparticles
4.6.2. Nematicidal Activity of ZnO Nanoparticles
4.6.3. Scanning Electron Microscopy of Root-Rot Fungi and Root-Knot Nematode
4.7. Pot Experiment
4.7.1. Experimental Design
4.7.2. Scanning Electron and Confocal Microscopy
4.7.3. Quantification and Histochemical Localization of Reactive Oxygen Species (ROS) and Lipid Peroxidation
4.8. Data Recording
4.8.1. Estimation of Plant Growth Parameters
4.8.2. Leghemoglobin Content and Root Nodules
4.8.3. Recording the Disease Parameters
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for plant disease management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and Health Effects of Pesticide Residues. In Sustainable Agriculture Reviews; Inamuddin Ahamed, M.I., Lichtfouse, E., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 311–336. [Google Scholar]
- Kumar, A.; Choudhary, A.; Kaur, H.; Guha, S.; Mehta, S.; Husen, A. Potential applications of engineered nanoparticles in plant disease management: A critical update. Chemosphere 2022, 295, 133798. [Google Scholar] [CrossRef] [PubMed]
- Elmer, W.; Ma, C.; White, J. Nanoparticles for plant disease management. Curr. Opin. Environ. Sci. Health 2018, 6, 66–70. [Google Scholar] [CrossRef]
- Rafique, M.; Tahir, R.; Gillani, S.S.A.; Tahir, M.B.; Shakil, M.; Iqbal, T.; Abdellahi, M.O. Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium cumini for seed germination and wastewater purification. Int. J. Environ. Anal. Chem. 2022, 102, 23–38. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Ul Haq, I.; Ijaz, S. Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants. In Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences; Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 289–310. [Google Scholar]
- González-Merino, A.M.; Hernández-Juárez, A.; Betancourt-Galindo, R.; Ochoa-Fuentes, Y.M.; Valdez-Aguilar, L.A.; Limón-Corona, M.L. Antifungal activity of zinc oxide nanoparticles in Fusarium oxysporum, Solanum lycopersicum pathosystem under controlled conditions. J. Phytopathol. 2021, 169, 533–544. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Zhu, W.; Hu, C.; Ren, Y.; Lu, Y.; Song, Y.; Ji, Y.; Han, C.; He, J. Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity. J. Environ. Chem. Eng. 2021, 9, 106659. [Google Scholar] [CrossRef]
- Duraisamy, K.; Amirthalingam, M.; Govindhan, T.; Kim, J.C.; Hasegawa, K.; Palanisamy, S. Fabrication of zinc oxide nanorods using plant latex serum as a green matrix for the sustainable management of root-knot nematodes. Mater. Lett. 2022, 317, 132098. [Google Scholar] [CrossRef]
- Kalaba, M.H.; Moghannem, S.A.; El-Hawary, A.S.; Radwan, A.A.; Sharaf, M.H.; Shaban, A.S. Green synthesized ZnO nanoparticles mediated by Streptomyces plicatus: Characterizations, antimicrobial and nematicidal activities and cytogenetic effects. Plants 2021, 10, 1760. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.A.; Jameel, M.; Khan, M.F.; Khan, M.; Khan, A.; Ahmad, F.; Alam, M. Grass-Shaped Zinc Oxide Nanoparticles Synthesized by the Sol-Gel Process and Their Antagonistic Properties towards the Biotrophic Parasite, Meloidogyne incognita. Bioinorg. Chem. Appl. 2023, 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Maleita, C.; Esteves, I.; Chim, R.; Fonseca, L.; Braga, M.E.M.; Abrantes, I.; de Sousa, H.C. Naphthoquinones from walnut husk residues show strong nematicidal activities against the root-knot nematode Meloidogyne hispanica. ACS Sustain. Chem. Eng. 2017, 5, 3390–3398. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.S.; Ahmad, H.; Shah, M. Analysis and management of phytonematodes associated with walnut (Juglans regia L.) in Hazara division, Pakistan. Punjab Univ. J. Zool. 2019, 34, 191–195. [Google Scholar] [CrossRef]
- Soto-Madrid, D.; Gutiérrez-Cutiño, M.; Pozo-Martínez, J.; Zúñiga-López, M.C.; Olea-Azar, C.; Matiacevich, S. Dependence of the ripeness stage on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts from industrial by-products. Molecules 2021, 26, 2878. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Ondul Koc, E.; Ozay, Y.; Canli, O.; Ozdemir, S.; Tollu, G.; Dizge, N. Antimicrobial and antioxidant activity of phenolic extracts from walnut (Juglans regia L.) green husk by using pressure-driven membrane process. J. Food Sci. Technol. 2023, 60, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Schwindl, S.; Kraus, B.; Heilmann, J. Phytochemical study of Juglans regia L. leaves. Phytochemistry 2017, 144, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Metwally, W. Biopesticides as eco-friendly alternatives for the management of root-knot nematode, Meloidogyne incognita on cowpea (Vigna unguiculata L.). Egypt. J. Agronematol. 2019, 18, 129–145. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed. 2019, 138, 415–424. [Google Scholar] [CrossRef]
- Mandal, M.K.; Pati, R.; Mukhopadhyay, D.; Majumdar, K. Maximising yield of cowpea through soil test-based nutrient application in terai alluvial soils. Better Crops–India 2009, 28. [Google Scholar]
- Bakr, R.A.; Mahdy, M.E.; Mousa, E.S.M. Survey of root-knot nematodes Meloidogyne spp. associated with different economic crops and weeds in Egypt. Egypt. J. Crop Prot. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Huynh, B.L.; Matthews, W.C.; Ehlers, J.D.; Lucas, M.R.; Santos, J.R.; Ndeve, A.; Close, T.J.; Roberts, P.A. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor. Appl. Genet. 2016, 129, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.X.; Desaeger, J.A. Host suitability of summer cover crops to Meloidogyne arenaria, M. enterolobii, M. incognita and M. javanica. Nematology 2021, 24, 171–179. [Google Scholar] [CrossRef]
- Souza, E.M.D.S.; Silva, L.A.B.D.; Pinto, F.Á.C.; Borel, J.C.; Capucho, A.S.; Ishikawa, F.H. Inoculation methods and agressiveness of Macrophomina phaseolina isolates in cowpea. Ciênc. Rural 2021, 52, e20210072. [Google Scholar] [CrossRef]
- Sumbul, A.; Mahmood, I. Interactive effect of Meloidogyne incognita and Macrophomina phaseolina on the development of root–rot disease complex in relation to growth and physiological attributes of chickpea. Hell. Plant Prot. J. 2020, 13, 13–23. [Google Scholar] [CrossRef]
- Tryfon, P.; Kamou, N.N.; Ntalli, N.; Karamanoli, K.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. Metal-based Nanoparticles as antifungal and nematicidal agents. In Proceedings of the 1st International Electronic Conference on Plant Science, Online, 1–15 December 2020. [Google Scholar]
- Rafiq, H.; Aftab, Z.E.H.; Anjum, T.; Ali, B.; Akram, W.; Bashir, U.; Mirza, F.S.; Aftab, M.; Ali, M.D.; Li, G. Bio-fabrication of zinc oxide nanoparticles to rescue mung bean against Cercospora leaf spot disease. Front. Plant Sci. 2022, 13, 1052984. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef]
- Al-darwesh, M.Y.; Ibrahim, S.S.; Mohammed, M.A. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results Chem. 2024, 7, 101368. [Google Scholar] [CrossRef]
- Darvishi, E.; Kahrizi, D.; Arkan, E. Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J. Mol. Liq. 2019, 286, 110831. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Mohamed, A.M.; Sharaky, M.; Mohamed, N.A.; Diab, Y.M. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: Characterization and evaluation of their biological activities. Chem. Biol. Technol. Agric. 2023, 10, 63. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef]
- Esteves, I.; Maleita, C.; Fonseca, L.; Braga, M.E.; Abrantes, I.; De Sousa, H.C. In vitro nematicidal activity of naphthoquinones against the root-lesion nematode Pratylenchus thornei. Phytopathol. Mediterr. 2017, 56, 127–132. [Google Scholar]
- Ara, T.; Shafi, S.; Ghazwani, M.; Mir, J.I.; Shah, A.H.; Qadri, R.A.; Hakami Wahab, A.R.; Khalid, M.; Hani, U.; Wahab, S. In vitro potent anticancer, antifungal, and antioxidant efficacy of walnut (Juglans regia L.) genotypes. Agronomy 2023, 13, 1232. [Google Scholar] [CrossRef]
- Mone, N.S.; Bhagwat, S.A.; Sharma, D.; Chaskar, M.; Patil, R.H.; Zamboni, P.; Nawani, N.N.; Satpute, S.K. Naphthoquinones and their derivatives: Emerging trends in combating microbial pathogens. Coatings 2021, 11, 434. [Google Scholar] [CrossRef]
- Gholampourazizi, E.; Rouhi, S.; Nouri, B.; Miandasteh, S.H. In vitro study of antifungal effect of walnut (Juglans regia L.) leaf extract on the Malassezia furfur fungus. Sci. J. Kurd. Univ. Med. Sci. 2015, 20, 30–39. [Google Scholar]
- Bukhari, M.N.; Shabbir, M.; Rather, L.J.; Shahid, M.; Singh, U.; Khan, M.A.; Mohammad, F. Dyeing studies and fastness properties of brown naphtoquinone colorant extracted from Juglans regia L. on natural protein fiber using different metal salt mordants. Text. Cloth. Sustain. 2017, 3, 3. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Alothman, A.A.; Almarhoon, Z.M.; Alsulaiman, M.F.; Al-Zaqri, N. Green synthesis of ZnO nanostructures using Salvadora persica leaf extract: Applications for photocatalytic degradation of methylene blue dye. Crystals 2020, 10, 441. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Parveen, A.; Ahmad, L.; Hashem, A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci. Hortic. 2019, 249, 374–382. [Google Scholar] [CrossRef]
- Ahamed, M.; Posgai, R.; Gorey, T.J.; Nielsen, M.; Hussain, S.M.; Rowe, J.J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 2010, 242, 263–269. [Google Scholar] [CrossRef]
- Lim, D.; Roh, J.Y.; Eom, H.J.; Choi, J.Y.; Hyun, J.; Choi, J. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 585–592. [Google Scholar] [CrossRef]
- Gupta, S.; Kushwah, T.; Vishwakarma, A.; Yadav, S. Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Res. Lett. 2015, 10, 1010. [Google Scholar] [CrossRef]
- Khan, M.R.; Siddiqui, Z.A. Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani. Hortic. Environ. Biotechnol. 2021, 62, 225–241. [Google Scholar] [CrossRef]
- Shakeel, A.; Khan, A.A.; Bhat, A.H.; Sayed, S. Nitrogen fertilizer alleviates root-knot nematode stress in beetroot by suppressing the pathogen while modulating the antioxidant defense system and cell viability of the host. Physiol. Mol. Plant Pathol. 2022, 120, 101838. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A.; Parveen, G. Determining the damage threshold of root-knot nematode, Meloidogyne arenaria on Vigna unguiculata (L.) Walp. Rhizosphere 2023, 27, 100714. [Google Scholar] [CrossRef]
- Reed, R.B.; Ladner, D.A.; Higgins, C.P.; Westerhoff, P.; Ranville, J.F. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 2012, 31, 93–99. [Google Scholar] [CrossRef]
- Arciniegas-Grijalba, P.A.; Patiño-Portela, M.C.; Mosquera-Sánchez, L.P.; Guerrero-Vargas, J.A.; Rodríguez-Páez, J.E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 2017, 7, 225–241. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Li, M.; Shakoor, N.; Adeel, M.; Zhou, P.; Guo, M.; Jiang, Y.; Zhao, W.; Lou, B.; et al. Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. Pest Manag. Sci. 2023, 79, 21–36. [Google Scholar] [CrossRef]
- Sukri, S.N.A.M.; Shameli, K.; Teow, S.Y.; Chew, J.; Ooi, L.T.; Lee-Kiun Soon, M.; Ismail, N.A.; Moeini, H. Enhanced antibacterial and anticancer activities of plant extract mediated green synthesized zinc oxide-silver nanoparticles. Front. Microbiol. 2023, 14, 1194292. [Google Scholar]
- Tahir, M.B.; Sohaib, M.; Rafique, M.; Sagir, M.; Rehman, N.U.; Muhammad, S. Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO. Appl. Nanosci. 2020, 10, 3925–3931. [Google Scholar] [CrossRef]
- Abolghasemi, R.; Haghighi, M.; Solgi, M.; Mobinikhaledi, A. Rapid synthesis of ZnO nanoparticles by waste thyme (Thymus vulgaris L.). Int. J. Environ. Sci. Technol. 2019, 16, 6985–6990. [Google Scholar] [CrossRef]
- Sebumpan, R.; Guiritan, K.R.; Suan, M.; Abapo, C.J.; Bhat, A.H.; Machado, R.A.; Nimkingrat, P.; Sumaya, N.H. Morphological and molecular identification of Trichoderma asperellum isolated from a dragon fruit farm in the southern Philippines and its pathogenicity against the larvae of the super worm, Zophobas morio (Fabricius, 1776) (Coleoptera: Tenebrionidae). Egypt. J. Biol. Pest Control 2022, 32, 47. [Google Scholar] [CrossRef]
- Khan, L.; Bhat, A.H.; Kumar, H.; Rana, A.; Hasan, M.N.; Ahmad, S.; Ahmed, I.; Machado, R.A.R.; Ameen, F. From soil to plant: Strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers. Front. Microbiol. 2023, 14, 1206217. [Google Scholar] [CrossRef]
- Woomer, P.L.; Karanja, N.; Kisamuli, S.M.; Murwira, M.; Bala, A. A Revised Manual for Rhizobium Methods and Standard Protocols Available on the Project Website. 2011. Available online: https://www.n2africa.org/sites/default/files/N2Africa_A%20revised%20manual%20for%20rhizobium%20methods%20and%20standard%20protocols%20available%20on%20the%20project%20website_1.pdf (accessed on 24 May 2024).
- Atieno, M.; Herrmann, L.; Okalebo, R.; Lesueur, D. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J. Microbiol. Biotechnol. 2012, 28, 2541–2550. [Google Scholar] [CrossRef]
- Khieya, V.; Simon, S.; Lal, A.A. Effect of botanical extracts against Fusarium oxysporum and Meloidogyne incognita (J2). Pharma Innov. J. 2018, 7, 297–302. [Google Scholar]
- Eisenback, J.D.; Hrischmann, H.; Sasser, J.N.; Triantaphyllou, A.C. A Guide to the Four Most Common Species of Root-Knot Nematodes (Meloidogyne spp.), with a Pictorial Key; State University, Department of Plant Pathology: Dhaka, Bangladesh, 1981; Volume 48. [Google Scholar]
- Bhat, A.H.; Loulou, A.; Abolafia, J.; Machado, R.A.; Kallel, S. Comparative morphological and molecular analyses of Acrobeloides bodenheimeri and A. tricornis Cobb, 1924 (Rhabditida, Cephalobidae) from Tunisia. Nematology 2022, 25, 207–226. [Google Scholar] [CrossRef]
- Bhat, A.A.; Shakeel, A.; Bhat, A.H.; Alajmi, M.F.; Khan, A.A.; Kumar, M. Exploiting fly ash as an ecofriendly pesticide/nematicide on Abesmoschus esculuntus: Insights into soil amendment-induced antioxidant fight against nematode mediated ROS. Chemosphere 2024, 358, 142143. [Google Scholar] [CrossRef]
- Nadler, S.A.; Bolotin, E.; Stock, S.P. Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data. Syst. Parasitol. 2006, 63, 159–179. [Google Scholar] [CrossRef]
- Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res. 2010, 4, 104–111. [Google Scholar]
- Mohanapriya, R.; Naveenkumar, R.N.; Balabaskar, P. Survey, virulence and pathogenicity of root rot incidence of cowpea in selected districts of Tamil Nadu caused by Macrophomina phaseolina (Tassi.) Goid. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 694–705. [Google Scholar] [CrossRef]
- Gholami, M.; Amini, J.; Abdollahzadeh, J.; Ashengroph, M. Basidiomycetes fungi as biocontrol agents against take-all disease of wheat. Biol. Control 2019, 130, 34–43. [Google Scholar] [CrossRef]
- Rex, B.; Prabhu, S.; Kumar, J.S. Antifungal efficacies of plant extracts against Alternaria solani (Ellis and Martin) jones and groutunder in vitro condition. Ann. Phytomed. 2019, 8, 148–152. [Google Scholar] [CrossRef]
- Dutta, P.; Bhowmick, P.; Boruah, S. Effect of extracellular metabolites of Trichoderma pseudokoningii on radial growth of Fusarium oxysporum, Colletotrichum capsici, Rhizoctonia solani and Sclerotinia sclerotiorum. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 878–879. [Google Scholar] [CrossRef]
- El-Rokiek, K.G.; El-Nagdi, W.M. Dual effects of leaf extracts of Eucalyptus citriodora on controlling purslane and root-knot nematode in sunflower. J. Plant Prot. Res. 2011, 51. [Google Scholar] [CrossRef]
- Aissani, N.; Urgeghe, P.P.; Oplos, C.; Saba, M.; Tocco, G.; Petretto, G.L.; Caboni, P. Nematicidal activity of the volatilome of Eruca sativa on Meloidogyne incognita. J. Agric. Food Chem. 2015, 63, 6120–6125. [Google Scholar] [CrossRef]
- Shakeel, A.; Bhat, A.H.; Bhat, A.A. Interactive effect of Meloidogyne incognita and fly ash on the growth, physiology, and antioxidant properties of carrot (Daucus carota L.). Environ. Sci. Pollut. Res. 2022, 29, 7661–7677. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.R.; Siddiqui, H.; Alam, P.; Hayat, S. Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea. Physiol. Mol. Biol. Plants 2020, 26, 2503–2520. [Google Scholar] [CrossRef]
- Olmo, R.; Cabrera, J.; Díaz-Manzano, F.E.; Ruiz-Ferrer, V.; Barcala, M.; Ishida, T. Root-knot nematodes induce gall formation by recruiting developmental pathways of post-embryonic organogenesis and regeneration to promote transient pluripotency. New Phytol. 2020, 227, 200–215. [Google Scholar] [CrossRef]
- LaRue, T.A.; Child, J.J. Sensitive fluorometric assay for leghemoglobin. Anal. Biochem. 1979, 92, 11–15. [Google Scholar] [CrossRef]
- Southey, J.F. Laboratory Methods for Work with Plant and Soil Nematodes; H.M.S.O. Books: Norwich, UK, 1986; pp. vii +- 202. [Google Scholar]
Treatment mgL−1 | Total J2s | % Mortality 48 h |
---|---|---|
Control | 100 | 2.58 ± 0.18 a |
10 mgL−1 | 100 | 6.32 ± 0.23 b |
20 mgL−1 | 100 | 7.87 ± 0.28 b |
40 mgL−1 | 100 | 39.23 ± 1.05 c |
60 mgL−1 | 100 | 71.22 ± 1.54 d |
80 mgL−1 | 100 | 93.92 ± 1.67 e |
100 mgL−1 | 100 | 94.12 ± 1.67 e |
Doses | No. of Galls | Number of Egg Masses | Reproduction Factor | Root Rot Index | Plant Length Root + Shoot (% Change) | Plant Fresh Mass (% Change) | Plant Dry Mass (% Change) | Leg Hemoglobin mg/g Nodules (% Change) | No. of Nodules (% Change) |
---|---|---|---|---|---|---|---|---|---|
UUC | 0 | 0 | 0 | 0 | 77.56 ± 1.41 c | 84.66 ± 1.55 f | 18.07 ± 0.32 f | 4.80 ± 0.08 f | 78.12 ± 1.44 f |
UIC | 62.77 ± 1.1 f | 69.33 ± 1.2 f | 5.69 ± 0.10 g | 5 | 38.22 ± 0.63 a −50.72 | 41.13 ± 0.74 a −51.41 | 5.24 ± 0.12 a −71.0 | 1.63 ± 0.02 a −66.04 | 22.98 ± 0.46 a −70.58 |
10 mgL−1 | 58.65 ± 1.0 e | 66.01 ± 1.1 f | 5.22 ± 0.09 f | 5 | 40.08 ± 0.70 a −48.32 | 42.68 ± 0.77 ab −49.58 | 5.75 ± 0.13 a −68.17 | 1.66 ± 0.02 a −65.41 | 25.76 ± 0.49 a −67.02 |
20 mgL−1 | 56.91 ± 1.0 e | 61.91 ± 1.1 e | 4.89 ± 0.08 e | 5 | 43.19 ± 0.73 a −44.31 | 44.77 ± 0.83 b −47.11 | 7.36 ± 0.14 b −59.26 | 1.69 ± 0.03 a −64.79 | 30.14 ± 0.58 b −61.42 |
40 mgL−1 | 42.12 ± 0.7 d | 51.87 ± 0.9 d | 3.22 ± 0.05 d | 4 | 51.40 ± 0.92 ab −33.72 | 49.98 ± 0.85 c −40.96 | 8.98 ± 0.15 c −50.30 | 2.41 ± 0.04 b −49.79 | 39.56 ± 0.75 c −49.35 |
60 mgL−1 | 33.02 ± 0.5 c | 37.67 ± 0.6 c | 2.81 ± 0.05 c | 3 | 58.22 ± 1.02 ab −24.93 | 56.11 ± 1.01 d −33.72 | 11.90 ± 0.21 d −34.14 | 2.80 ± 0.05 c −41.66 | 48.12 ± 0.82 d −38.40 |
80 mgL−1 | 12.18 ± 0.2 b | 15.04 ± 0.2 b | 1.02 ± 0.01 b | 2 | 74.09 ± 1.35 c −4.47 | 73.08 ± 1.31 e −13.67 | 15.04 ± 0.27 e −16.76 | 3.42 ± 0.06 d −28.75 | 63.89 ± 1.15 e −18.21 |
100 mgL−1 | 3.01 ± 0.1 a | 4.03 ± 0.1 a | 0.4 ± 0.01 a | 1 | 78.44 ± 1.47 c +1.13 | 83.90 ± 1.52 f −0.89 | 17.87 ± 0.30 f −1.10 | 4.63 ± 0.08 e −3.54 | 76.13 ± 1.36 f −2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.A.; Parveen, G.; Bhat, A.H.; Reshi, Z.A.; Ataya, F.S.; Handoo, Z.A. Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea. Plants 2024, 13, 1743. https://doi.org/10.3390/plants13131743
Hussain MA, Parveen G, Bhat AH, Reshi ZA, Ataya FS, Handoo ZA. Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea. Plants. 2024; 13(13):1743. https://doi.org/10.3390/plants13131743
Chicago/Turabian StyleHussain, Mir Akhtar, Ghazala Parveen, Aashaq Hussain Bhat, Zubair Altaf Reshi, Farid S. Ataya, and Zaffar A. Handoo. 2024. "Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea" Plants 13, no. 13: 1743. https://doi.org/10.3390/plants13131743
APA StyleHussain, M. A., Parveen, G., Bhat, A. H., Reshi, Z. A., Ataya, F. S., & Handoo, Z. A. (2024). Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea. Plants, 13(13), 1743. https://doi.org/10.3390/plants13131743