Recent Advances in Nanocarriers for Drug Delivery

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 1057

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues, 

We are pleased to announce this Special Issue, “Recent Advance in Nanocarriers for Drug Delivery”, designed to highlight the potential of recent advancements, innovative research, and emerging directions for nanocarriers in drug delivery.

Nanocarriers have revolutionized the field of drug delivery by offering enhanced bioavailability, targeted delivery, controlled release, and improved therapeutic efficacy. Their diverse structures, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic nanoparticles, enable the precise and efficient transport of drugs to specific sites, reducing side effects and optimizing treatment outcomes. This Special Issue aims to provide a comprehensive platform for the exploration of novel nanocarrier-based drug delivery systems and to foster interdisciplinary research in this rapidly evolving field.

We welcome original research articles, reviews, and short communications covering, but not limited to, the following topics:

  • Design, synthesis, and characterization of novel nanocarriers.
  • Nanocarriers for targeted and personalized medicine.
  • Stimuli-responsive and smart drug delivery systems.
  • Advances in polymeric, lipid-based, and inorganic nanocarriers.
  • Nanocarriers for gene therapy and nucleic acid delivery.
  • Applications in cancer therapy, infectious diseases, and regenerative medicine.
  • Overcoming biological barriers for efficient drug delivery.
  • Toxicity, biocompatibility, and regulatory aspects of nanocarriers.

Publishing in this Special Issue offers the opportunity to be part of a highly relevant and impactful collection of research focused on cutting-edge developments in nanocarrier-based drug delivery. Articles in this Special ssue will benefit from high visibility and a targeted readership of peers interested in nanomedicine, pharmaceutical sciences, biomedical engineering, and clinical applications.

Authors are encouraged to clearly state the novelty, significance, and potential biomedical applications of their work within their manuscripts.

Prof. Dr. Liliana Mititelu-Tartau
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocarriers
  • drug delivery
  • targeted therapy
  • controlled release
  • biocompatibility
  • liposomal delivery
  • polymeric nanoparticles
  • gene therapy
  • smart drug systems
  • biomedical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

23 pages, 1422 KiB  
Review
Harnessing the Power of Nanocarriers to Exploit the Tumor Microenvironment for Enhanced Cancer Therapy
by Bandar Aldhubiab, Rashed M. Almuqbil and Anroop B. Nair
Pharmaceuticals 2025, 18(5), 746; https://doi.org/10.3390/ph18050746 - 19 May 2025
Viewed by 365
Abstract
The tumor microenvironment (TME) has a major role in malignancy and its complex nature can mediate tumor survival, metastasis, immune evasion, and drug resistance. Thus, reprogramming or regulating the immunosuppressive TME has a significant contribution to make in cancer therapy. Targeting TME with [...] Read more.
The tumor microenvironment (TME) has a major role in malignancy and its complex nature can mediate tumor survival, metastasis, immune evasion, and drug resistance. Thus, reprogramming or regulating the immunosuppressive TME has a significant contribution to make in cancer therapy. Targeting TME with nanocarriers (NCs) has been widely used to directly deliver anticancer drugs to control TME, which has revealed auspicious outcomes. TME can be reprogrammed by using a range of NCs to regulate immunosuppressive factors and activate immunostimulatory cells. Moreover, TME can be ameliorated via regulating the redox environment, oxygen content, and pH value of the tumor site. NCs have the capacity to provide site-specific delivery of therapeutic agents, controlled release, enhanced solubility and stability, decreased toxicities, and enhanced pharmacokinetics as well as biodistribution. Numerous NCs have demonstrated their potential by inducing distinct anticancer mechanisms by delivering a range of anticancer drugs in various preclinical studies, including metal NCs, liposomal NCs, solid lipid NCs, micelles, nanoemulsions, polymer-based NCs, dendrimers, nanoclays, nanocrystals, and many more. Some of them have already received US Food and Drug Administration approval, and some have entered different clinical phases. However, there are several challenges in NC-mediated TME targeting, including scale-up of NC-based cancer therapy, rapid clearance of NCs by the mononuclear phagocyte system, and TME heterogeneity. In order to harness the full potential of NCs in tumor treatment, there are several factors that need to be carefully studied, including optimization of drug loading into NCs, NC-associated immunogenicity, and biocompatibility for the successful translation of NC-based anticancer therapies into clinical practice. In this review, a range of NCs and their applications in drug delivery to remodel TME for cancer therapy are extensively discussed. Moreover, findings from numerous preclinical and clinical studies with these NCs are also highlighted. Full article
(This article belongs to the Special Issue Recent Advances in Nanocarriers for Drug Delivery)
Show Figures

Figure 1

29 pages, 1005 KiB  
Review
Advancements in Nanocarrier Systems for Nose-to-Brain Drug Delivery
by Thi-Thao-Linh Nguyen and Van-An Duong
Pharmaceuticals 2025, 18(5), 615; https://doi.org/10.3390/ph18050615 - 23 Apr 2025
Viewed by 479
Abstract
In recent decades, nose-to-brain drug delivery has shown effectiveness in treating many central nervous system diseases. Intranasally administered drugs can be delivered to the brain through the olfactory and trigeminal pathways that bypass the blood–brain barrier. However, nose-to-brain drug delivery is challenging due [...] Read more.
In recent decades, nose-to-brain drug delivery has shown effectiveness in treating many central nervous system diseases. Intranasally administered drugs can be delivered to the brain through the olfactory and trigeminal pathways that bypass the blood–brain barrier. However, nose-to-brain drug delivery is challenging due to the inadequate nasal mucosa absorption of drugs and the short retention time of the intranasal formulations. These problems can be minimized through the use of nano-drug delivery systems, such as micelles, polymeric nanoparticles, nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers. They can enhance the drug’s bioavailability in the brain via increases in drug solubility, permeation, and stability. Nose-to-brain nano-drug delivery systems have been evaluated in vivo by a number of research groups. This review aims to provide an overview of nose-to-brain delivery and recent advances in the development of nano-drug delivery systems for delivering drugs from the nose to the brain to improve the treatment of some central nervous system diseases. Full article
(This article belongs to the Special Issue Recent Advances in Nanocarriers for Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop