Cutting-Edge Biotechnologies and Applications of Natural Products in Drug R&D and Disease Treatment

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 25 November 2025 | Viewed by 620

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro 76130, Mexico
Interests: ncRNAs in human diseases; gene regulation; biomarker; therapy; anticancer phytochemicals; plant microRNA; nanotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent advancements in biotechnology have revolutionized drug research and development (R&D), unlocking the therapeutic potential of natural products. This Special Issue will explore the intersection of cutting-edge biotechnologies and natural product-based drug discovery, focusing on innovative approaches to treating various diseases. Natural products derived from plants, microorganisms, and marine organisms have historically served as the foundation for many clinically approved drugs. With breakthroughs in synthetic biology, metabolic engineering, and AI-driven drug discovery, researchers can now optimize and modify these bioactive compounds more efficiently. This Special Issue will highlight the novel biotechnological strategies that are accelerating the development and formulation of potent natural therapeutic agents. Additionally, we will examine the role of natural products in addressing emerging health challenges, such as antimicrobial resistance, cancer, neurodegenerative disorders, and metabolic diseases. Contributions will also explore advances in drug formulation, delivery systems, and bioavailability enhancement, ensuring that natural-product-derived therapies reach their full potential in clinical applications. By bringing together experts in biotechnology, pharmacology, nanotechnology, and natural product chemistry, this Special Issue will provide a comprehensive overview of the latest research trends, challenges, and future directions in this rapidly evolving field. We invite the submission of original research articles, reviews, and perspectives that shed light on innovative methodologies and applications shaping the future of drug discovery and disease treatment.

Prof. Dr. Sujay Paul
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • bioactive compounds
  • natural product drug discovery and drug design
  • natural drug formulation
  • metabolic engineering for bioactive compounds
  • natural therapeutic agents
  • nanoformulations of natural compounds
  • synthetic biology for natural product biosynthesis
  • genome editing and creation of novel bioactive compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2632 KiB  
Article
Therapeutic Potential of Glucose Oxidase-Loaded Biogenic Mesoporous Silica Nanoparticles in Ovarian Cancer
by Andrea G. Uriostegui-Pena, Padmavati Sahare, Gabriel Luna-Bárcenas and Sujay Paul
Pharmaceuticals 2025, 18(7), 1060; https://doi.org/10.3390/ph18071060 - 18 Jul 2025
Viewed by 430
Abstract
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal malignancies of the female reproductive system. Glucose oxidase (GOx) has emerged as a potential therapeutic agent in cancer treatment by inducing tumor starvation through glucose depletion. Nonetheless, its clinical application is constrained due [...] Read more.
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal malignancies of the female reproductive system. Glucose oxidase (GOx) has emerged as a potential therapeutic agent in cancer treatment by inducing tumor starvation through glucose depletion. Nonetheless, its clinical application is constrained due to its systemic toxicity, immunogenicity, poor in vivo stability, and short half-life. These challenges can be addressed through nanotechnology; in particular, biogenic mesoporous silica nanoparticles (MSNs) offer promise as drug delivery systems (DDSs) that enhance therapeutic efficacy while minimizing side effects. Methods: Biogenic MSNs were extracted from the Equisetum myriochaetum plant via acid digestion, functionalized with 3-aminopropiltrietoxysilane (APTES) and glutaraldehyde (GTA), and loaded with GOx. The free and immobilized MSNs were characterized using FTIR, DLS, XRD, SEM/EDX, and BET techniques. A colorimetric approach was employed to quantify the enzymatic activity of both the free and immobilized GOx. The MTT assay was employed to assess the viability of SKOV3 cells. The obtained IC50 concentration of the nanoformulation was administered to SKOV3 cells to analyze the expression of cancer-related genes using RT-qPCR. Results: IC50 values of 60.77 ng/mL and 111.6 µg/mL were ascertained for the free and immobilized GOx, respectively. Moreover, a significant downregulation of the oncogene β-catenin (CTNNB1) was detected after 24 h with the nanoformulation. Conclusions: Our findings indicate that GOx-loaded biogenic MSNs may serve as a potential therapeutic agent for ovarian cancer. This is, to the best of our knowledge, the first report exploring the effect of GOx-loaded biogenic MSNs on SKOV3 cells. Full article
Show Figures

Figure 1

Back to TopTop