Emerging Trends in Inhaled Drug Delivery

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: closed (20 January 2025) | Viewed by 5963

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, USA
Interests: inhaled drug delivery; thermostable vaccines; nanomedicine
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Inhaled drug delivery is an excellent choice for non-invasive administration of drugs and has gained significant attention in the past decade or so. Pulmonary delivery allows for the direct administration of drugs/ biologics into the lungs for the treatment of both local and systemic diseases. The lungs, as a delivery site, offer many advantages such as a large surface area, dense vasculature, lower enzymatic activity than the gut, and a thin alveolar epithelium that allows for rapid absorption and immediate onset of action. The right combination of formulation and device is needed to generate particles or droplets of an appropriate aerodynamic diameter to achieve deposition in the respiratory airways. Recent advances in the field of pharmaceutical engineering, quality-by-design, and process analytical technology have enabled significant progress in formulation development for inhaled delivery.

In this Special Issue, we aim to collect articles that highlight and discuss the latest advances and emerging trends in inhaled drug delivery. Potential articles for this Special Issue may focus on the role of nanoparticles in pulmonary drug delivery, a quality-by-design-based approach toward the development of inhalable formulations, repurposing and reformulation of drugs and drug products for inhaled delivery, targeted delivery to specific regions of the lungs, and pulmonary vaccine delivery.

Dr. Nitesh K. Kunda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inhaled drug delivery
  • quality-by-design
  • nanoparticles in inhalation
  • pulmonary vaccine delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

18 pages, 6600 KiB  
Article
Design of Experiment (DoE) Approach for Developing Inhalable PLGA Microparticles Loaded with Clofazimine for Tuberculosis Treatment
by Druva Sarika Rongala, Suyash M. Patil and Nitesh K. Kunda
Pharmaceuticals 2024, 17(6), 754; https://doi.org/10.3390/ph17060754 - 7 Jun 2024
Cited by 2 | Viewed by 1889
Abstract
Tuberculosis (TB) is an airborne bacterial infection caused by Mycobacterium tuberculosis (M. tb), resulting in approximately 1.3 million deaths in 2022 worldwide. Oral therapy with anti-TB drugs often fails to achieve therapeutic concentrations at the primary infection site (lungs). In this [...] Read more.
Tuberculosis (TB) is an airborne bacterial infection caused by Mycobacterium tuberculosis (M. tb), resulting in approximately 1.3 million deaths in 2022 worldwide. Oral therapy with anti-TB drugs often fails to achieve therapeutic concentrations at the primary infection site (lungs). In this study, we developed a dry powder inhalable formulation (DPI) of clofazimine (CFZ) to provide localized drug delivery and minimize systemic adverse effects. Poly (lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) containing CFZ were developed through a single emulsion solvent evaporation technique. Clofazimine microparticles (CFZ MPs) displayed entrapment efficiency and drug loading of 66.40 ± 2.22 %w/w and 33.06 ± 1.45 µg/mg, respectively. To facilitate pulmonary administration, MPs suspension was spray-dried to yield a dry powder formulation (CFZ SD MPs). Spray drying had no influence on particle size (~1 µm), zeta potential (−31.42 mV), and entrapment efficiency. Solid state analysis (PXRD and DSC) of CFZ SD MPs studies demonstrated encapsulation of the drug in the polymer. The drug release studies showed a sustained drug release. The optimized formulation exhibited excellent aerosolization properties, suggesting effective deposition in the deeper lung region. The in vitro antibacterial studies against H37Ra revealed improved (eight-fold) efficacy of spray-dried formulation in comparison to free drug. Hence, clofazimine dry powder formulation presents immense potential for the treatment of tuberculosis with localized pulmonary delivery and improved patient compliance. Full article
(This article belongs to the Special Issue Emerging Trends in Inhaled Drug Delivery)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

12 pages, 487 KiB  
Review
Budesonide Attains Its Wide Clinical Profile by Alternative Kinetics
by Ralph Brattsand and Olof Selroos
Pharmaceuticals 2024, 17(4), 503; https://doi.org/10.3390/ph17040503 - 15 Apr 2024
Cited by 1 | Viewed by 1946
Abstract
The introduction of inhaled corticosteroids (ICSs) changed over a few decades the treatment focus of mild-to-moderate asthma from bronchodilation to reduction in inflammation. This was achieved by inhaling a suitable corticosteroid (CS), giving a high, protracted airway concentration at a low total dose, [...] Read more.
The introduction of inhaled corticosteroids (ICSs) changed over a few decades the treatment focus of mild-to-moderate asthma from bronchodilation to reduction in inflammation. This was achieved by inhaling a suitable corticosteroid (CS), giving a high, protracted airway concentration at a low total dose, thereby better combining efficacy and tolerance than oral therapy. Successful trials with the potent, lipophilic “skin” CS beclomethasone dipropionate (BDP) paved the way, suggesting that ICSs require a very low water solubility, prolonging their intraluminal dissolution within airways. The subsequent ICS development, with resulting clinical landmarks, is exemplified here with budesonide (BUD), showing that a similar efficacy/safety relationship is achievable by partly alternative mechanisms. BUD is much less lipophilic, giving it a 100-fold higher water solubility than BDP and later developed ICSs, leading to its more rapid intraluminal dissolution and faster airway and systemic uptake rates. In airway tissue, a BUD fraction is reversibly esterified to intracellular fatty acids, a lipophilic conjugate, which prolongs airway efficacy. Another mechanism is that the rapidly absorbed bulk fraction, via short plasma peaks, adds anti-inflammatory activity at the blood and bone marrow levels. Importantly, these plasma peaks are too short to provoke systemic adverse actions. Controlled clinical trials with BUD changed the use of ICS from a last resort to first-line treatment. Starting ICS treatment immediately after diagnosis (“early intervention”) became a landmark for BUD. An established dose response made BUD suitable for the treatment of patients with all degrees of asthma severity. With the development of the budesonide/formoterol combination inhaler (BUD/FORM), BUD contributed to the widely used BUD/FORM maintenance and reliever therapy (MART). Recent studies demonstrated the value of BUD/FORM as a generally recommended as-needed therapy for asthma (“anti-inflammatory reliever”, AIR). These abovementioned qualities have all influenced international asthma management and treatment guidelines. Full article
(This article belongs to the Special Issue Emerging Trends in Inhaled Drug Delivery)
Show Figures

Figure 1

Other

Jump to: Research, Review

12 pages, 925 KiB  
Opinion
Navigating the Development of Dry Powder for Inhalation: A CDMO Perspective
by Beatriz Noriega-Fernandes, Mariam Ibrahim, Rui Cruz, Philip J. Kuehl and Kimberly B. Shepard
Pharmaceuticals 2025, 18(3), 434; https://doi.org/10.3390/ph18030434 - 19 Mar 2025
Viewed by 1028
Abstract
Interest in pulmonary/nasal routes for local delivery has significantly increased over the last decade owing to challenges faced in the delivery of molecules with poor solubility, systemic side effects, or new modalities such as biologics. This increasing interest has attracted new stakeholders to [...] Read more.
Interest in pulmonary/nasal routes for local delivery has significantly increased over the last decade owing to challenges faced in the delivery of molecules with poor solubility, systemic side effects, or new modalities such as biologics. This increasing interest has attracted new stakeholders to the field who have yet to explore inhaled drug product development. Contract development and manufacturing organizations (CDMOs) play a key role in supporting the development of drug products for inhalation, from early feasibility to post marketing. However, a critical gap exists for these newcomers: a clear, integrated, and a CDMO-centric roadmap for navigating the complexities of pulmonary/nasal drug product development. The purpose of this publication is to highlight the key aspects considered in the product development of inhaled dry powder products from a CDMO perspective, providing a novel and stepwise development strategy. A roadmap for the development of inhalable drug products is proposed with authors’ recommendations to facilitate the decision-making process, starting from the definition of the desired target product profile followed by dose selection in preclinical studies. The importance of understanding the nature of the API, whether a small molecule or a biologic, will be highlighted. Additionally, technical guidance on the choice of formulation (dry powder/liquid) will be provided with special focus on dry powders. Selection criteria for the particle engineering technology, mainly jet milling and spray drying, will also be discussed, including the advantages and limitations of such technologies, based on the authors’ industry expertise. Lastly, the paper will highlight the challenges and considerations for encapsulating both spray dried and jet milled powders. Unlike existing literature, this paper offers a unified framework that bridges preclinical, formulation, manufacturing, and encapsulation considerations, providing a practical tool for newcomers. Full article
(This article belongs to the Special Issue Emerging Trends in Inhaled Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop