- Article
Application Effects of Clinker-Tea-Waste Compost on Rice Growth and Nutrient Uptake in a Low-Fertility Paddy Field
- Wataru Shiraishi,
- Nobuki Morita and
- Yo Toma
- + 1 author
Sustainable recycling of organic residues and industrial byproducts is crucial for soil fertility and environmental sustainability. This study evaluated the effects of clinker-tea-waste compost (CTC) on rice growth, nutrient uptake, and soil chemical properties in a low-fertility paddy field over two years. In 2017, CTC was applied at 12, 18, and 22 Mg ha−1, while chemical fertilizer (CF) served as control. In 2018, all treatments received equal CF to assess residual effects. The results showed a limited immediate nitrogen supply in 2017, with no significant differences in rice growth, yield, or soil ammonium nitrogen (AN) among treatments. However, significant residual nitrogen effects emerged in 2018, with higher soil AN concentrations, nitrogen uptake indices, and rice yields in plots with higher CTC rates than in 2017. Si availability from clinker ash was evident immediately after application in 2017, correlating positively with rice stover Si content and CTC application rate. However, its residual effect disappeared in 2018 when CTC was discontinued. These findings demonstrate the complementary nutrient supply of CTC, with delayed nitrogen availability from tea residues and short-lived silicon release from clinker ash. This study highlights the potential of CTC for enhancing soil fertility and crop productivity in rice cultivation systems.
12 December 2025




