Journal Description
Nitrogen
Nitrogen
is an international, peer-reviewed, open access journal on the whole field of nitrogen research published quarterly online by MDPI.
- Open Access—free to download, share and reuse content. Authors receive recognition for their contribution when the paper is reused.
- High Visibility: indexed within CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.6 days after submission; acceptance to publication is undertaken in 7.2 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer-review and reviewer names published annually in the journal.
Latest Articles
“Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens
Nitrogen 2023, 4(2), 223-230; https://doi.org/10.3390/nitrogen4020015 - 16 May 2023
Abstract
The utilization of compost to enhance plant productivity and symbiotic nitrogen fixation (SNF) has been recognized as an effective alternative to synthetic nitrogen fertilizers. This environmentally sustainable method is readily accessible to farmers. This study investigated the effect of olive pomace (“alperujo”, AL)
[...] Read more.
The utilization of compost to enhance plant productivity and symbiotic nitrogen fixation (SNF) has been recognized as an effective alternative to synthetic nitrogen fertilizers. This environmentally sustainable method is readily accessible to farmers. This study investigated the effect of olive pomace (“alperujo”, AL) compost on the nodulation and SNF of soybeans (Glycine max L.) and their natural symbiont (Bradyrhizobium diazoefficiens). For that, soybean plants were subjected to several doses of AL compost under controlled greenhouse conditions. At the end of the experiment, the dry weight of plant biomass (aerial part and roots), the number and fresh weight of nodules, and nitrogen and leghaemoglobin contents were analyzed. The application of AL compost significantly improved soybean growth, as demonstrated by an increase in both plant biomass and height. Furthermore, nodular leghaemoglobin content and nitrogen content were found to be enhanced by the addition of AL compost (7 and 40%, respectively), indicating an increase in nodule effectiveness and symbiotic efficiency. Our results provide clear evidence of the synergetic effect of AL compost on the soybean-B. diazoefficiens association, probably due to AL-compost improved soybean roots development, and rhizospheric organic matter and nutrients assimilation by rhizobia.
Full article
(This article belongs to the Special Issue Alternatives to Mineral Nitrogen Fertilizers in Agriculture: State of the Art, Challenges and Future Prospects)
►
Show Figures
Open AccessArticle
Nitrogen Metabolism in Non-Nodulated and Nodulated Soybean Plants Related to Ureide Synthesis
Nitrogen 2023, 4(2), 209-222; https://doi.org/10.3390/nitrogen4020014 - 07 May 2023
Abstract
Soybean plants can fix atmospheric N2 in the root nodule, a symbiotic organ with rhizobia. The primary forms of N transported from N2 fixation are ureides, allantoate, and allantoin, supplemented with asparagine. The nitrate absorbed in the roots is transported to
[...] Read more.
Soybean plants can fix atmospheric N2 in the root nodule, a symbiotic organ with rhizobia. The primary forms of N transported from N2 fixation are ureides, allantoate, and allantoin, supplemented with asparagine. The nitrate absorbed in the roots is transported to the shoots in the forms of NO3− and asparagine with a little portion of ureides. The concentrations of N-metabolites were analyzed by capillary electrophoresis after supplying various concentrations of urea, precursors of ureides, and allopurinol, an inhibitor of xanthine dehydrogenase, to investigate the ureide synthesis pathway in the roots. When the non-nodulated soybean plants were treated with 0–5 mM of urea, the concentrations of asparagine and glutamine in the xylem sap and the roots increased remarkably. In addition, allantoate concentration increased with the urea concentrations becoming higher. Allopurinol inhibited the accumulation of allantoate but did not affect the asparagine and glutamine accumulation in roots, stems, leaves, and xylem sap, supporting that allantoate is synthesized by purine degradation in roots the same as in the nodules. When ureide precursors were supplied to the nodulated soybean plants, the concentrations of asparagine and glutamine in the xylem sap and roots increased, suggesting that the ureide precursors were absorbed and assimilated to amides in the roots.
Full article
(This article belongs to the Special Issue Nitrogen Metabolism: From Plant Cell to Field and Vice Versa)
►▼
Show Figures

Figure 1
Open AccessArticle
The Influence of Nitrogen Applications and Low Rainfall Conditions on Yield of Mixed Grass-Legume Grassland for 2 Years
by
and
Nitrogen 2023, 4(2), 194-208; https://doi.org/10.3390/nitrogen4020013 - 28 Apr 2023
Abstract
Mixed-species grassland containing legumes were suggested to increase yield compared to monocultures. Furthermore, some legumes were suggested to be able to sustain growth, even under drought conditions. The first aim of the current study was to measure if multispecies grassland with legumes is
[...] Read more.
Mixed-species grassland containing legumes were suggested to increase yield compared to monocultures. Furthermore, some legumes were suggested to be able to sustain growth, even under drought conditions. The first aim of the current study was to measure if multispecies grassland with legumes is also more productive when their N input due to symbiotic N2 fixation is taken into account. Our second aim was to determine the benefit of grass–legume mixtures in terms of dry matter production under naturally occurring drought conditions. Mixed-species grasslands, consisting of monocultures and variable mixtures of (a) Trifolium pratense, (b) Trifolium. repens, (c) Lolium perenne, and (d) a mixture of drought-tolerant grasses (GSWT based), were assessed for their dry matter production over two years with contrasting weather patterns. The legume–grass seeding mixtures received either a fixed (180 kg N ha−1) or adapted N-fertilizer application (0–180 kg N ha−1), with the latter taking the assumed symbiotic N2 fixation by legumes into account. Mixed-species grassland showed improved yield compared to monocultures both in comparably humid and drought-affected years. The benefits of multispecies grass–legume mixtures were considerably more obvious under a fixed but still measurable under an adapted N-fertilizer regime. The species diversity effect appears to be significantly dependent on the additional N supply enabled by legumes’ symbiotic N2-fixation. Legumes and drought-tolerant grasses yielded equally well under drought conditions, although legumes showed major advantages during moderate drought and humid conditions. White and red clover, although both legumes, differed significantly in their persistence under elevated-N and their dry matter production under low-N fertilizer application, but were equal in their tolerance towards drought.
Full article
(This article belongs to the Special Issue Optimizing Fertilizer Nitrogen Use on Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Biodiversity-Based Empirical Critical Loads of Nitrogen Deposition in the Athabasca Oil Sands Region
by
and
Nitrogen 2023, 4(2), 169-193; https://doi.org/10.3390/nitrogen4020012 - 13 Apr 2023
Abstract
►▼
Show Figures
Anthropogenic nitrogen (N) emissions can have considerable effects on terrestrial ecosystems, with chronic N deposition leading to changes in plant species composition. The Athabasca Oil Sands Region (AOSR) represents a large point source of N emissions, which has prompted concern for surrounding habitats.
[...] Read more.
Anthropogenic nitrogen (N) emissions can have considerable effects on terrestrial ecosystems, with chronic N deposition leading to changes in plant species composition. The Athabasca Oil Sands Region (AOSR) represents a large point source of N emissions, which has prompted concern for surrounding habitats. The objective of this study was to determine the relative importance of N deposition as a driver of plant species community composition against bioclimatic and soil chemical variables. Further, we sought to identify community thresholds in plant species composition across a N deposition gradient. This assessment was performed for 46 Jack pine (Pinus banksiana Lamb.)-dominant forest sites surrounding the AOSR spanning Alberta and Saskatchewan. In total, 35 environmental variables were evaluated using redundancy analysis (RDA), followed by gradient forest analysis applied to plant species abundance data. Soil chemical variables accounted for just over 26% of the total explainable variation in the dataset, followed by bioclimatic variables (19%) and deposition variables (5%), but joint effects between variables also explained a significant portion of the total variation (p < 0.001). Total deposited nitrogen (TDN), and sulphur (TDS) along with bioclimatic and soil chemical variables, were identified as important variables in gradient forest analysis. A single, definitive threshold across TDN was identified at approximately 5.6 kg N ha−1 yr−1 (while a TDS threshold was found at 14.4 kg S ha−1 yr−1). The TDN threshold range was associated primarily with changepoints for several vascular species (Pyrola asarifolia, Pyrola chlorantha, Cornus canadensis, and Arctostaphylos uva-ursi) and bryophyte and lichen species (Pleurozium schreberi, Vulpicida pinastri, and Dicranum polysetum). These results suggest that across Jack pine-dominant forests surrounding the AOSR, the biodiversity-based empirical critical load of nutrient N is 5.6 kg N ha−1 yr−1.
Full article

Figure 1
Open AccessArticle
Effects of Multiple Global Change Factors on Symbiotic and Asymbiotic N2 Fixation: Results Based on a Pot Experiment
Nitrogen 2023, 4(1), 159-168; https://doi.org/10.3390/nitrogen4010011 - 17 Mar 2023
Abstract
Biological N2 fixation, a major pathway for new nitrogen (N) input to terrestrial ecosystems, largely determines the dynamics of ecosystem structure and functions under global change. Nevertheless, the responses of N2 fixation to multiple global change factors remain poorly understood. Here,
[...] Read more.
Biological N2 fixation, a major pathway for new nitrogen (N) input to terrestrial ecosystems, largely determines the dynamics of ecosystem structure and functions under global change. Nevertheless, the responses of N2 fixation to multiple global change factors remain poorly understood. Here, saplings of two N2-fixing plant species, Alnus cremastogyne and Cajanus cajan, were grown at rural and urban sites, respectively, with the latter representing an environment with changes in multiple factors occurring simultaneously. Symbiotic N2 fixation per unit of nodule was significantly higher at the urban site than the rural site for A. cremastogyne, but the rates were comparable between the two sites for C. cajan. The nodule investments were significantly lower at the urban site relative to the rural site for both species. Symbiotic N2 fixation per plant increased by 31.2 times for A. cremastogyne, while that decreased by 88.2% for C. cajan at the urban site compared to the rural site. Asymbiotic N2 fixation rate in soil decreased by 46.2% at the urban site relative to the rural site. The decrease in symbiotic N2 fixation per plant for C. cajan and asymbiotic N2 fixation in soil was probably attributed to higher N deposition under the urban conditions, while the increase in symbiotic N2 fixation per plant for A. cremastogyne was probably related to the higher levels of temperature, atmospheric CO2, and phosphorus deposition at the urban site. The responses of N2 fixation to multiple global change factors and the underlying mechanisms may be divergent either between symbiotic and asymbiotic forms or among N2-fixing plant species. While causative evidence is urgently needed, we argue that these differences should be considered in Earth system models to improve the prediction of N2 fixation under global change.
Full article
(This article belongs to the Special Issue New Insights into Biological Nitrogen Fixation)
►▼
Show Figures

Figure 1
Open AccessReview
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives
Nitrogen 2023, 4(1), 135-158; https://doi.org/10.3390/nitrogen4010010 - 08 Mar 2023
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of
[...] Read more.
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing Liquid Inoculant Formulation of Biofertilizer (Sinorhizobium meliloti) on Growth, Yield, and Nitrogen Uptake of Lucerne (Medicago sativa)
Nitrogen 2023, 4(1), 125-134; https://doi.org/10.3390/nitrogen4010009 - 24 Feb 2023
Abstract
Lucerne is regarded as the best legume crop for forage to be cultivated in South Africa. It is commonly used to produce good quality hay. It also plays an important role in soil conservation, regeneration, and crop rotation systems as it supplies substantial
[...] Read more.
Lucerne is regarded as the best legume crop for forage to be cultivated in South Africa. It is commonly used to produce good quality hay. It also plays an important role in soil conservation, regeneration, and crop rotation systems as it supplies substantial amounts of nitrogen to succeeding crops through symbiotic N2 fixation, which makes it the preferable choice for intensive forage production systems. Fertilizer in liquid inoculant formulations has demonstrated to contribute growth and yield increase for leguminous crops. Therefore, the aim of this paper was to determine the effects of Sinorhizobium meliloti liquid formulation inoculation on the growth, yield, and nitrogen content in lucerne. The strain RF14 (Sinorhizobium meliloti) was collected from the Agricultural Research Council at Roodeplaat (Plant Health and Protection located (East), Pretoria (South Africa). The liquid inoculant contained 6.5 × 109 viable cells mL−1. According to the Kooen–Gieger climatic classification, the experiments were conducted on two different climatic zones. The first site was in Bronkhorspruit (Blesbokfontein farm) in the Gauteng province and the second was in Hartbeesfontein (Rietfontein Farm) in the Northwest province. The results showed that lucerne inoculation with liquid inoculant formulation of Sinorhizobium meliloti significantly increased nodule number, size, growth, and yield in both bioclimatic zones. The significantly increased were compared to the negative control. The Sinorhizobium meliloti inoculant increased nitrogen accumulation in all inoculated treatments compared to the control. The finding of this research provides important information on the impact of rhizobium microbial inoculant application in the improvement of soil fertility through nodule formation. In addition, seed vigor improvement was translated in overall growth and yield increase in lucerne plants.
Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
►▼
Show Figures

Figure 1
Open AccessArticle
Ecological Risks from Atmospheric Deposition of Nitrogen and Sulphur in Jack Pine forests of Northwestern Canada
by
and
Nitrogen 2023, 4(1), 102-124; https://doi.org/10.3390/nitrogen4010008 - 16 Feb 2023
Cited by 1
Abstract
►▼
Show Figures
Chronic elevated nitrogen (N) deposition can have adverse effects on terrestrial ecosystems. For large areas of northern Canada distant from emissions sources, long-range atmospheric transport of N may impact plant species diversity, even at low deposition levels. The objective of this study was
[...] Read more.
Chronic elevated nitrogen (N) deposition can have adverse effects on terrestrial ecosystems. For large areas of northern Canada distant from emissions sources, long-range atmospheric transport of N may impact plant species diversity, even at low deposition levels. The objective of this study was to establish plant species community thresholds for N deposition under multiple environmental gradients using gradient forest analysis. Plant species abundance data for 297 Jack pine (Pinus banksiana Lamb.)-dominant forest plots across Alberta and Saskatchewan, Canada, were evaluated against 43 bioclimatic and deposition variables. Bioclimatic variables were overwhelmingly the most important drivers of community thresholds. Nonetheless, dry N oxide (DNO) and dry N dioxide deposition inferred a total deposited N (TDN) community threshold of 1.4–2.1 kg N ha−1 yr−1. This range was predominantly associated with changes in several lichen species, including Cladina mitis, Vulpicida pinastri, Evernia mesomorpha and Lecanora circumborealis, some of which are known bioindicators of N deposition. A secondary DNO threshold appeared to be driving changes in several vascular species and was equivalent to 2.45–3.15 kg N ha−1 yr−1 on the TDN gradient. These results suggest that in low deposition ‘background’ regions a biodiversity-based empirical critical load of 1.4–3.15 kg N ha−1 yr−1 will protect lichen communities and other N-sensitive species in Jack pine forests across Northwestern Canada. Nitrogen deposition above the critical load may lead to adverse effects on plant species biodiversity within these forests.
Full article

Figure 1
Open AccessArticle
Soil Carbon and Nitrogen Forms and Their Relationship with Nitrogen Availability Affected by Cover Crop Species and Nitrogen Fertilizer Doses
by
, , , , , and
Nitrogen 2023, 4(1), 85-101; https://doi.org/10.3390/nitrogen4010007 - 13 Feb 2023
Abstract
Cover crops and N fertilization strongly impact the forms of soil organic C and N and their availability, which change the responses of plants to N fertilization and soil organic C accumulation. Our study objectives were to evaluate the effects of cover crops
[...] Read more.
Cover crops and N fertilization strongly impact the forms of soil organic C and N and their availability, which change the responses of plants to N fertilization and soil organic C accumulation. Our study objectives were to evaluate the effects of cover crops and N doses on soil total and soluble C and N contents, N fractions, and potentially available N in a long-term no-till experiment. The experiment was conducted in a randomized block design with split plots and four replicates. The main treatments were cover crops species, jack bean, lablab bean, millet, velvet bean, and fallow cultivated prior to maize. Secondary treatments included two doses of mineral N (0 and 120 kg ha−1). Soil samples were collected at depths of 0–5, 5–10, 10–20, and 20–40 cm, which were analyzed for total and water-soluble C and N contents, N fractions (acid hydrolysis method), and potentially available N (hot KCl solution and direct steam distillation methods). Cover crop velvet bean resulted in the highest soil organic carbon levels, and cover crop millet plus fertilization resulted in the highest levels of soil total N. The amino sugar was the largest N fraction, which decreased by 8% with N fertilization. The soluble C and N content strongly correlated with total and available N content. The changes in soil N were influenced by cover crop species and fertilization and the interactions of both, so the combination of fertilization regime and cover crops must be chosen with care. Additionally, legumes are a good source of plant and soil N in systems with low input of N via fertilizer; however, the combination of N fertilizer with legumes can reduce soil N reserves, leading to its long-term depletion.
Full article
(This article belongs to the Special Issue Optimizing Fertilizer Nitrogen Use on Crops)
►▼
Show Figures

Figure 1
Open AccessReview
Ecological Management of the Nitrogen Cycle in Organic Farms
Nitrogen 2023, 4(1), 58-84; https://doi.org/10.3390/nitrogen4010006 - 29 Jan 2023
Abstract
Nitrogen availability is among the major limiting factors for the production of organic crops. A central goal of organic farming, according to certification standards, is to rely on ecological and biological principles to build and maintain soil health. Nitrogen is among the most
[...] Read more.
Nitrogen availability is among the major limiting factors for the production of organic crops. A central goal of organic farming, according to certification standards, is to rely on ecological and biological principles to build and maintain soil health. Nitrogen is among the most complex nutrient elements with respect to its different chemical forms and its flow within the environment at the soil, microbial, plant, aquatic, and atmospheric levels. Because, from an ecological perspective, all production variables on the farm are interrelated, a challenge for scientists and practitioners is to better understand nutrient cycles on the farm with respect to how particular production practices may improve N availability during particular stages of crop growth while minimizing potential environmental losses that may lead to contamination of the groundwater and aquatic habitats or to undesirable greenhouse gas emissions. Here, based on a selected review of the literature, we evaluate N cycles at the farm level and present key ecologically-based management strategies that may be adopted to improve internal N cycles. Given the location-specific nature of most ecosystem interactions, a participatory agroecology approach is proposed that incorporates the knowledge of indigenous and traditional cultures to better understand and design resilient and socially-equitable organic systems.
Full article
Open AccessArticle
Cover Crop Termination Method and N Fertilization Effects on Sweet Corn Yield, Quality, N Uptake, and Weed Pressure
Nitrogen 2023, 4(1), 37-57; https://doi.org/10.3390/nitrogen4010005 - 25 Jan 2023
Abstract
Cover cropping is vital for soil health. Timing and method of termination are major factors influencing the agroecological benefits of cover crops. Delay in the termination of cover crops results in greater biomass production. Likewise, incorporation of cover crops during termination often speeds
[...] Read more.
Cover cropping is vital for soil health. Timing and method of termination are major factors influencing the agroecological benefits of cover crops. Delay in the termination of cover crops results in greater biomass production. Likewise, incorporation of cover crops during termination often speeds residue mineralization compared to no-till systems. We used four termination strategies for a late-terminated winter rye–legume mix (in tilled and no-till systems) and four N application rates in the succeeding sweet corn crop to examine how cover crop termination affected N response in sweet corn as well as the independent effects of N application rate and cover crop termination method. The experiment was conducted using a randomized complete block design with four replications. Increasing N fertilization up to 144 kg N ha−1 promoted yield and quality in sweet corn as well as summer weed growth. The cover crop termination method did not affect sweet corn response to N fertilizer. This suggests that when rye is terminated late in the spring before planting cash crops, the incorporation of its residues may not greatly affect the soil N dynamics. This indicates that decisions to incorporate rye residues may be taken by farmers with an eye mainly towards management issues such as weed control, environmental impacts, and soil health.
Full article
(This article belongs to the Special Issue Soil Nitrogen Supply: Linking Plant Available N to Ecosystems Functions and Productivity II)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Sink Size on 15N and 13C Allocation during Different Phenological Phases of Spring Wheat Cultivars
by
and
Nitrogen 2023, 4(1), 28-36; https://doi.org/10.3390/nitrogen4010004 - 19 Jan 2023
Abstract
The scientific objective of this study was to answer the question of whether sink limitation is also true for high quality wheat varieties. We examined the incorporation of 15N and 13C during phenological phases into vegetative parts and grains of Elite
[...] Read more.
The scientific objective of this study was to answer the question of whether sink limitation is also true for high quality wheat varieties. We examined the incorporation of 15N and 13C during phenological phases into vegetative parts and grains of Elite wheat Triso (E) and Quality wheat Naxos (A) when the spike is halved. Three splits of fertilizer were applied at EC 11, EC 30, EC 59, whereby 10% at EC 30 and EC 59 was 15N, and plants were also labelled with 13CO2. The application of only the third split as 15N, combined with spike-halving, resulted in a significantly higher 15N-content (+11%) of 0.486 mg 15N/g DM, compared to the control (0.437 mg15N/g DM). Labelling whole plants with 13CO2 at EC 59 resulted in a significantly higher 13C-content—40%—(0.223 mg 13C/g DM) of the grains of the control for Triso at the fully-ripe stage (EC 89), compared to Naxos (0.160 mg 13C/g DM). This superiority was reduced to 34%, and was also demonstrated by spike-halving (0.226 mg 13C/g DM, 0.169 mg 13C/g DM). Remobilization of 15N for control and spike-halving treatments were 68.2% and 61.1%, respectively. This clearly demonstrates that the reduction of the sink size by spike-halving leads to a 7% reduction in the remobilization of 15N from vegetative to reproductive tissues.
Full article
Open AccessEditorial
Acknowledgment to the Reviewers of Nitrogen in 2022
Nitrogen 2023, 4(1), 26-27; https://doi.org/10.3390/nitrogen4010003 - 18 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers
Nitrogen 2023, 4(1), 16-25; https://doi.org/10.3390/nitrogen4010002 - 06 Jan 2023
Cited by 1
Abstract
The use of fertilizers is of the utmost importance for food security on a global scale. However, fertilizer production and overuse may yield environmental issues. In this research, Life Cycle Assessment (LCA) was used to estimate eighteen environmental impact categories for six different
[...] Read more.
The use of fertilizers is of the utmost importance for food security on a global scale. However, fertilizer production and overuse may yield environmental issues. In this research, Life Cycle Assessment (LCA) was used to estimate eighteen environmental impact categories for six different fertilizer products: three synthetic (ammonium nitrate; calcium ammonium nitrate; and urea ammonium nitrate) and three organic (cattle manure; compost; and a mixture of compost and synthetic fertilizer). The processes for fertilizer production were obtained from the Agribalyse database. The system boundaries were from cradle to factory gate (or farm gate in the case of animal waste), and the impact indicators were calculated per kg of nitrogen (N). The data showed that the organo-mineral fertilizer (a mix of compost and synthetic fertilizer) had the highest environmental impact according to the results for most of the impact categories. The median values for this product regarding water consumption, fossil resource use and global warming potential were 322.5 L, 3.82 kg oil equivalent and 13.70 kg CO2 equivalent, respectively, per kg of N. The respective values for cattle manure, for which the lowest environmental impact was observed, were 0.23 L of water, 0.002 kg oil-eq and 3.29 kg of CO2-eq, respectively, per kg of N. Further research should focus on the determination of the impact from other stages of the life cycle (e.g., transportation and application to the field) which were not included in this work. This research could support the selection of N fertilizer in sustainable food production.
Full article
(This article belongs to the Special Issue Alternatives to Mineral Nitrogen Fertilizers in Agriculture: State of the Art, Challenges and Future Prospects)
►▼
Show Figures

Figure 1
Open AccessArticle
Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil
Nitrogen 2023, 4(1), 1-15; https://doi.org/10.3390/nitrogen4010001 - 31 Dec 2022
Abstract
►▼
Show Figures
Reducing chemical fertilizers is critical for maintaining soil health and minimizing environmental damage. Biochar-based organic fertilizers reduce fertilizer inputs, improve soil fertility, increase crop productivity, and reduce environmental risks. In this study, a pot experiment was conducted in a greenhouse to assess the
[...] Read more.
Reducing chemical fertilizers is critical for maintaining soil health and minimizing environmental damage. Biochar-based organic fertilizers reduce fertilizer inputs, improve soil fertility, increase crop productivity, and reduce environmental risks. In this study, a pot experiment was conducted in a greenhouse to assess the potential of biochar-based organic and inorganic fertilizers to improve soil fertility and Okra yield. Seven treatments with three replicates were arranged in a completely randomized design (CRD). Three treatments included biochar-blended formulations (i) biochar mixed with mineral NPK fertilizer (BF), (ii) biochar mixed with vermicompost (BV), and (iii) biochar mixed with goat manure (BM); two treatments included biochar enrichment formulations (iv) biochar enriched with cow urine (BCU) and (v) biochar enriched with mineral NPK fertilizer in aqueous solution (BFW), and the remaining two included control treatments; (vi) control (CK: no biochar and no fertilizers) and (vii) fertilized control (F: only recommended NPK fertilizer and no biochar). Mineral NPK fertilizers in BF, BFW, and F were applied at the recommended rate as urea, di-ammonium phosphate (DAP), and muriate of potash (MOP). Organic fertilizers in BV, BM, and BCU treatments were applied in equal quantities. All biochar-amended treatments showed improved soil chemical properties with higher pH, organic carbon, total N, and available P and K compared to the two non-biochar control plots (CK and F). Biochar blended with goat manure (BM) showed the highest effect on soil fertility and fruit yield. BM (51.8 t ha−1) increased fruit yield by 89% over CK (27.4 t ha−1) and by 88% over F (27 t ha−1). Similarly, cow urine-enriched biochar (BCU) (35 t ha−1) increased fruit yield by 29% and 28% compared to CK and F, respectively. Soil pH, OC, and nutrient availability (total N, available P, and available K) showed a significantly positive relationship with fruit yield. The study suggests that using biochar-based organic fertilizers, such as BCU and BM, could outperform recommended mineral fertilizers (F) and produce higher yields and healthy soils, thereby contributing to mitigating the current food security and environmental concerns of the country.
Full article

Figure 1
Open AccessArticle
Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana
by
, , , , , and
Nitrogen 2022, 3(4), 652-662; https://doi.org/10.3390/nitrogen3040043 - 16 Dec 2022
Abstract
Numerous biological and chemical methods have been proposed over the years for estimating the nitrogen (N) mineralization capacity of soils; however, none of them has found general use in soil fertility testing. The efficacy of a recently proposed alkaline hydrolysis method for assessing
[...] Read more.
Numerous biological and chemical methods have been proposed over the years for estimating the nitrogen (N) mineralization capacity of soils; however, none of them has found general use in soil fertility testing. The efficacy of a recently proposed alkaline hydrolysis method for assessing N availability in soils compared with the standard long-term incubation technique for determining potentially available N was evaluated. The nitrogen mineralization of 12 surface soils incubated under aerobic conditions at 25 °C for 26 weeks was determined. Field-moist soils were direct-steam distilled with 1 M KOH or 1 M NaOH; the NH3 released was trapped in boric acid, and its concentration was determined successively every 5 min for 40 min. The cumulative N mineralized or hydrolyzed was fitted to the first-order exponential equation to determine the potentially mineralizable N (No) and an analogous “potentially hydrolyzable N (Nmax)” for the soils. The flush of CO2 (fCO2) following the rewetting and incubation of air-dried soils under aerobic conditions for 3 days was also determined. The results showed that the Nmax values differed considerably among the soils, indicating differences in the chemical nature and reactivity of the organic N content of the soils, and were significantly correlated with No and fCO2 values. The estimated Nmax and No values ranged from 105 to 371 mg N kg−1 and 121 to 292 mg kg−1, respectively. Based on the simple and inexpensive nature of the alkaline hydrolysis procedure, the reduction in the incubation time required to obtain No (months to minutes), and the strong association between Nmax and No, we concluded that Nmax is a good predictor of the biologically discrete and quantifiable labile pool of mineralizable soil organic N (ON), and the use of the alkaline hydrolyzable ON as a predictor of No merits consideration for routine use in soil testing laboratories for estimating the N-supplying capacity of soils.
Full article
(This article belongs to the Special Issue Soil Nitrogen Supply: Linking Plant Available N to Ecosystems Functions and Productivity II)
►▼
Show Figures

Figure 1
Open AccessArticle
N Absorption, Transport, and Recycling in Nodulated Soybean Plants by Split-Root Experiment Using 15N-Labeled Nitrate
Nitrogen 2022, 3(4), 636-651; https://doi.org/10.3390/nitrogen3040042 - 05 Dec 2022
Cited by 2
Abstract
Nitrate concentration is variable in soils, so the absorbed N from roots in a high-nitrate site is recycled from shoots to the root parts in N-poor niche. In this report, the absorption, transport, and recycling of N derived from 15N-labeled nitrate were
[...] Read more.
Nitrate concentration is variable in soils, so the absorbed N from roots in a high-nitrate site is recycled from shoots to the root parts in N-poor niche. In this report, the absorption, transport, and recycling of N derived from 15N-labeled nitrate were investigated with split-root systems of nodulated soybean. The NO3− accumulated in the root in 5 mM NO3− solution; however, it was not detected in the roots and nodules in an N-free pot, indicating that NO3− itself is not recycled from leaves to underground parts. The total amount of 15NO3− absorption from 2 to 4 days of the plant with the N-free opposite half-root accelerated by 40% compared with both half-roots that received NO3−. This result might be due to the compensation for the N demand under one half-root could absorb NO3−. About 2–3% of the absorbed 15N was recycled to the opposite half-root, irrespective of N-free or NO3− solution, suggesting that N recycling from leaves to the roots was not affected by the presence or absence of NO3−. Concentrations of asparagine increased in the half-roots supplied with NO3− but not in N-free half-roots, suggesting that asparagine may not be a systemic signal for N status.
Full article
(This article belongs to the Special Issue Nitrogen Metabolism: From Plant Cell to Field and Vice Versa)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effect of Late 15N-Fertilization and Water Deficit on Allocation into the Gluten of German and Mediterranean Spring Wheat Cultivars
by
and
Nitrogen 2022, 3(4), 628-635; https://doi.org/10.3390/nitrogen3040041 - 22 Nov 2022
Abstract
In a split N-application system, the objective was to quantify N/15N in gluten and non-gluten proteins after the late application of 30 or 60 kg N, whereby 10% of the third split was applied as 15N. This fertilization was combined
[...] Read more.
In a split N-application system, the objective was to quantify N/15N in gluten and non-gluten proteins after the late application of 30 or 60 kg N, whereby 10% of the third split was applied as 15N. This fertilization was combined with a reduced water supply for 21 days (well-watered (ww); water deficit (wd)). German spring wheat cultivars, Elite wheat Taifun, Quality wheat Monsun and cultivars from the Mediterranean territory, Golia, Gönen, were examined. The protein content in gluten was for 30 kg N, ww, similar for Taifun, Golia, and Gönen, but markedly lower in Monsun (231, 245, 247, 194 mg protein/g DM). The water deficit increased the protein content in the gluten of Golia and Gönen and was higher than that of Taifun and Monsun (297, 257, 249, 202 mg protein/g DM). Fertilization of 60 kg N, ww, did not result in any change in the protein content in gluten and differences between the cultivars were not detectable. The 15N protein in gluten was for 30 kg N, ww, markedly higher in Gönen (2.32 mg 15N protein/g DM), compared to Golia and Monsun (1.93, 1.50 mg 15N protein/g DM), and similar in Taifun (1.64 mg 15N protein/g DM). 15N fertilizer uptake into gluten was stimulated by water deficit for 30 and 60 kg N, leading to significantly increased 15N protein in Golia and Gönen, (2.38, 2.99, 4.34, 5.87 mg 15N protein/g DM). Fertilization of 60 kg N led to a proportional two-time increase in the 15N gluten protein of the four cultivars, in ww and wd plants. Assessed on the basis of 15N fertilizer allocation under wd conditions into gluten proteins, Golia and Gönen have a stronger sink activity, compared to Taifun and Monsun.
Full article
Open AccessArticle
Rapid Permafrost Thaw Removes Nitrogen Limitation and Rises the Potential for N2O Emissions
Nitrogen 2022, 3(4), 608-627; https://doi.org/10.3390/nitrogen3040040 - 15 Nov 2022
Cited by 1
Abstract
Ice–rich Pleistocene permafrost deposits (Yedoma) store large amounts of nitrogen (N) and are susceptible to rapid thaw. In this study, we assess whether eroding Yedoma deposits are potential sources of N and gaseous carbon (C) losses. Therefore, we determined aerobic net ammonification and
[...] Read more.
Ice–rich Pleistocene permafrost deposits (Yedoma) store large amounts of nitrogen (N) and are susceptible to rapid thaw. In this study, we assess whether eroding Yedoma deposits are potential sources of N and gaseous carbon (C) losses. Therefore, we determined aerobic net ammonification and nitrification, as well as anaerobic production of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) in laboratory incubations. Samples were collected from non-vegetated and revegetated slump floor (SF) and thaw mound (TM) soils of a retrogressive thaw slump in the Lena River Delta of Eastern Siberia. We found high nitrate concentrations (up to 110 µg N (g DW)−1) within the growing season, a faster transformation of organic N to nitrate, and high N2O production (up to 217 ng N2O-N (g DW)−1 day−1) in revegetated thaw mounds. The slump floor was low in nitrate and did not produce N2O under anaerobic conditions, but produced the most CO2 (up to 7 µg CO2-C (g DW)−1 day−1) and CH4 (up to 65 ng CH4-C (g DW)−1 day−1). Nitrate additions showed that denitrification was substrate limited in the slump floor. Nitrate limitation was rather caused by field conditions (moisture, pH) than by microbial functional limitation since nitrification rates were positive under laboratory conditions. Our results emphasize the relevance of considering landscape processes, geomorphology, and soil origin in order to identify hotspots of high N availability, as well as C and N losses. High N availability is likely to have an impact on carbon cycling, but to what extent needs further investigation.
Full article
(This article belongs to the Special Issue Nitrogen Cycling in Permafrost Soils)
►▼
Show Figures

Figure 1
Open AccessPerspective
Secondary Immobilization as a Phase of N mineralization Dynamics of Soil Organic Inputs
Nitrogen 2022, 3(4), 600-607; https://doi.org/10.3390/nitrogen3040039 - 01 Nov 2022
Abstract
Current understanding of nitrogen (N) mineralization from organic soil inputs considers three alternative processes: immediate net mineralization of N, net immobilization followed by net mineralization, or exclusively net immobilization. The three processes are compatible and linked with the C:N ratio rule. However, research
[...] Read more.
Current understanding of nitrogen (N) mineralization from organic soil inputs considers three alternative processes: immediate net mineralization of N, net immobilization followed by net mineralization, or exclusively net immobilization. The three processes are compatible and linked with the C:N ratio rule. However, research evidence from a number of incubation studies incorporating processed materials like manures, composts, manure composts, or already decomposed plant residues suggest the presence of a second N immobilization phase. The mechanisms and conditions of this process, which is against the prevailing theory of soil N cycling, have not been ascertained, but they should most likely be attributed to impeded dead microbial biomass turnover. The transfer of mineral forms of N to the organic N pool may reasonably be explained by the chemical stabilization of nitrogenous compounds with secondary products of lignin degradation, which occurs late after incorporation of an organic input in soil. Secondary immobilization questions the reliability of the C:N ratio and most likely of other quality indices if proved to be real, even to some extent, while it may also have significant consequences on the management of soil organic additives applied as fertilizers.
Full article
(This article belongs to the Special Issue Soil Nitrogen Supply: Linking Plant Available N to Ecosystems Functions and Productivity II)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Conferences
Special Issues
Special Issue in
Nitrogen
Nitrogen Management and Water-Nitrogen Interactions in Agriculture
Guest Editor: José Salvador Rubio-AsensioDeadline: 31 May 2023
Special Issue in
Nitrogen
Soil Nitrogen Supply: Linking Plant Available N to Ecosystems Functions and Productivity II
Guest Editor: Jacynthe Dessureault-RompréDeadline: 15 June 2023
Special Issue in
Nitrogen
Algal and Plant Contribution to N2O Emissions
Guest Editor: Angel LlamasDeadline: 30 June 2023
Special Issue in
Nitrogen
Nitrogen Cycling in Permafrost Soils
Guest Editors: Benjamin Abbott, Christina Biasi, Pertti MartikainenDeadline: 15 July 2023