Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity
Abstract
1. Introduction
2. Ecosystems and Their Impacts on Nitrogen Dynamics
2.1. Forest Ecosystems
2.2. Terrestrial Agroecosystems
2.3. Marine and Ocean Ecosystems
3. Climate Effects on Nitrogen Cycling
3.1. Increased Temperatures
3.2. Unpredictable Rainfall
3.3. Elevated CO2
4. Nutrient Imbalances and Its Impact on Nitrogen Cycle
4.1. Effect on Human Health
4.2. Effect on Plants and Soil Habitats
5. Conclusions
5.1. Policy and Mitigation
5.2. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cleaves, H.J. Nitrogen. In Encyclopedia of Astrobiology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–3. [Google Scholar]
- Ferousi, C.; Majer, S.H.; DiMucci, I.M.; Lancaster, K.M. Biological and Bioinspired Inorganic N–N Bond-Forming Reactions. Chem. Rev. 2020, 120, 5252–5307. [Google Scholar] [CrossRef]
- Molla, M.; Vilchez, J.M.; Gavilan, M.; Diaz, A.I. The Nitrogen-to-Oxygen Evolution in Galaxies: The Role of the Star Formation Rate. Mon. Not. R. Astron. Soc. 2006, 372, 1069–1080. [Google Scholar] [CrossRef]
- Altieri, K.E.; Hastings, M.G.; Peters, A.J.; Oleynik, S.; Sigman, D.M. Isotopic Evidence for a Marine Ammonium Source in Rainwater at Bermuda. Glob. Biogeochem. Cycles 2014, 28, 1066–1080. [Google Scholar] [CrossRef]
- Delaria, E.R.; Cohen, R.C. Measurements of Atmosphere–Biosphere Exchange of Oxidized Nitrogen and Implications for the Chemistry of Atmospheric NOx. Acc. Chem. Res. 2023, 56, 1720–1730. [Google Scholar] [CrossRef]
- Duri, L.G.; Caporale, A.G.; Rouphael, Y.; Vingiani, S.; Palladino, M.; De Pascale, S.; Adamo, P. The Potential for Lunar and Martian Regolith Simulants to Sustain Plant Growth: A Multidisciplinary Overview. Front. Astron. Space Sci. 2022, 8, 747821. [Google Scholar] [CrossRef]
- Nixon, C.A. The Composition and Chemistry of Titan’s Atmosphere. ACS Earth Space Chem. 2024, 8, 406–456. [Google Scholar] [CrossRef] [PubMed]
- Threatt, S.D.; Rees, D.C. Biological Nitrogen Fixation in Theory, Practice, and Reality: A Perspective on the Molybdenum Nitrogenase System. FEBS Lett. 2023, 597, 45–58. [Google Scholar] [CrossRef]
- Lindaas, J.; Pollack, I.B.; Garofalo, L.A.; Pothier, M.A.; Farmer, D.K.; Kreidenweis, S.M.; Campos, T.L.; Flocke, F.; Weinheimer, A.J.; Montzka, D.D.; et al. Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. J. Geophys. Res. Atmos. 2021, 126, e2020JD032657. [Google Scholar] [CrossRef]
- Schumann, U.; Huntrieser, H. The Global Lightning-Induced Nitrogen Oxides Source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef]
- Mattoo, R.; Suman, B.M. Microbial Roles in the Terrestrial and Aquatic Nitrogen Cycle—Implications in Climate Change. FEMS Microbiol. Lett. 2023, 370, fnad061. [Google Scholar] [CrossRef]
- Fields, S. Global Nitrogen: Cycling out of Control. Environ. Health Perspect. 2004, 112, A556–A563. [Google Scholar] [CrossRef]
- Mattoo, R.; Suman, B.M. Comparison of Rhizospheric Functional Diversity Between Chemically Fertilized and Bioinoculated Millet. In Millet Rhizosphere. Rhizosphere Biology; Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K., Eds.; Springer: Singapore, 2023; pp. 149–170. [Google Scholar]
- Mattoo, R.; Gowda, M. Harnessing Soil Bacteria and Their Benefits for Sustainable Agriculture with Changing Climate. CABI Rev. 2022. [Google Scholar] [CrossRef]
- Denkhaus, L.; Siffert, F.; Einsle, O. An Unusual Active Site Architecture in Cytochrome c Nitrite Reductase NrfA-1 from Geobacter Metallireducens. FEMS Microbiol. Lett. 2023, 370, fnad068. [Google Scholar] [CrossRef]
- van der Plas, F.; Hautier, Y.; Ceulemans, T.; Alard, D.; Bobbink, R.; Diekmann, M.; Dise, N.B.; Dorland, E.; Dupré, C.; Gowing, D.; et al. Atmospheric Nitrogen Deposition Is Related to Plant Biodiversity Loss at Multiple Spatial Scales. Glob. Change Biol. 2024, 30, e17445. [Google Scholar] [CrossRef] [PubMed]
- Suddick, E.C.; Whitney, P.; Townsend, A.R.; Davidson, E.A. The Role of Nitrogen in Climate Change and the Impacts of Nitrogen–Climate Interactions in the United States: Foreword to Thematic Issue. Biogeochemistry 2013, 114, 1–10. [Google Scholar] [CrossRef]
- Gurung, A.; Mattoo, R. Microbes in Biogeochemical Cycles: A Perspective on Climate Resilient Agriculture. CABI Rev. 2021, 16, 6. [Google Scholar] [CrossRef]
- Liu, J.; Cai, H.; Chen, S.; Pi, J.; Zhao, L. A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives. Agriculture 2023, 13, 743. [Google Scholar] [CrossRef]
- Kartal, B.; Maalcke, W.J.; de Almeida, N.M.; Cirpus, I.; Gloerich, J.; Geerts, W.; Op den Camp, H.J.M.; Harhangi, H.R.; Janssen-Megens, E.M.; Francoijs, K.-J.; et al. Molecular Mechanism of Anaerobic Ammonium Oxidation. Nature 2011, 479, 127–130. [Google Scholar] [CrossRef]
- Mattoo, R.; Mallikarjuna, S. Soil Microbiome Influences Human Health In the Context of Climate Change. Future Microbiol. 2023, 18, 845–859. [Google Scholar] [CrossRef]
- Lama, S.; Velescu, A.; Leimer, S.; Weigelt, A.; Chen, H.; Eisenhauer, N.; Scheu, S.; Oelmann, Y.; Wilcke, W. Plant Diversity Influenced Gross Nitrogen Mineralization, Microbial Ammonium Consumption and Gross Inorganic N Immobilization in a Grassland Experiment. Oecologia 2020, 193, 731–748. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weathers, K.C.; Arthur, M.A.; Schultz, J.C. Nitrogen Cycling in a Northern Hardwood Forest: Do Species Matter? Biogeochemistry 2004, 67, 289–308. [Google Scholar] [CrossRef]
- Guo, J.; Gao, Y.; Eissenstat, D.M.; He, C.; Sheng, L. Belowground Responses of Woody Plants to Nitrogen Addition in a Phosphorus-Rich Region of Northeast China. Trees 2020, 34, 143–154. [Google Scholar] [CrossRef]
- Becker, H.; Aosaar, J.; Varik, M.; Morozov, G.; Aun, K.; Mander, Ü.; Soosaar, K.; Uri, V. Annual Net Nitrogen Mineralization and Litter Flux in Well-Drained Downy Birch, Norway Spruce and Scots Pine Forest Ecosystems. Silva Fenn. 2018, 52, 10013. [Google Scholar] [CrossRef]
- Zhai, X.; Zheng, Y.; Ma, F.; Ren, L.; Bai, W.; Tian, Q.; Zhang, W.-H. Root Exudation Is Involved in Regulation of Nitrogen Transformation under Mowing in a Temperate Steppe. Soil. Biol. Biochem. 2024, 195, 109481. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef]
- Liu, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Root Exudates Shift How N Mineralization and N Fixation Contribute to the Plant-Available N Supply in Low Fertility Soils. Soil. Biol. Biochem. 2022, 165, 108541. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Al-Amri, S.M.; El-Enany, A.-W.E. Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture 2023, 13, 2092. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, Z.; Diao, Z.; Zhang, Y.; Wang, Y.; Ma, L. The Effects of Litter Input and Increased Precipitation on Soil Microbial Communities in a Temperate Grassland. Front. Microbiol. 2024, 15, 1347016. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.M.; Chen, J.; Shen, R.F. Land-Use Change Has a Greater Effect on Soil Diazotrophic Community Structure than the Plant Rhizosphere in Acidic Ferralsols in Southern China. Plant Soil. 2021, 462, 445–458. [Google Scholar] [CrossRef]
- Bomfim, B.; Silva, L.C.R.; Doane, T.A.; Horwath, W.R. Interactive Effects of Land-Use Change and Topography on Asymbiotic Nitrogen Fixation in the Brazilian Atlantic Forest. Biogeochemistry 2019, 142, 137–153. [Google Scholar] [CrossRef]
- Ren, M.; Li, C.; Gao, X.; Niu, H.; Cai, Y.; Wen, H.; Yang, M.; Siddique, K.H.M.; Zhao, X. High Nutrients Surplus Led to Deep Soil Nitrate Accumulation and Acidification after Cropland Conversion to Apple Orchards on the Loess Plateau, China. Agric. Ecosyst. Environ. 2023, 351, 108482. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, X.; Chen, Y.; Liu, L.; Li, M.; Wang, T.; Sun, Y.; Li, H.; Guo, X. Nitrogen Deposition Enhances the Competitive Advantage of Invasive Plant Species over Common Native Species through Improved Resource Acquisition and Absorption. Ecol. Process. 2024, 13, 61. [Google Scholar] [CrossRef]
- David, T.I.; Storkey, J.; Stevens, C.J. Understanding How Changing Soil Nitrogen Affects Plant–Pollinator Interactions. Arthropod Plant Interact. 2019, 13, 671–684. [Google Scholar] [CrossRef]
- Li, Z.; Xu, B.; Du, T.; Ma, Y.; Tian, X.; Wang, F.; Wang, W. Excessive Nitrogen Fertilization Favors the Colonization, Survival, and Development of Sogatella Furcifera via Bottom-Up Effects. Plants 2021, 10, 875. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.-A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of Forest Soil Respiration in Response to Nitrogen Deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Bakker, E.S.; Knops, J.M.H.; Milchunas, D.G.; Ritchie, M.E.; Olff, H. Cross-site Comparison of Herbivore Impact on Nitrogen Availability in Grasslands: The Role of Plant Nitrogen Concentration. Oikos 2009, 118, 1613–1622. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, M.; Zhang, J.; Liu, Z.; Mo, J. Soil Diazotrophs Sustain Nitrogen Fixation under High Nitrogen Enrichment via Adjustment of Community Composition. mSystems 2024, 9, e00547-24. [Google Scholar] [CrossRef]
- Dai, Y.; Di, H.J.; Cameron, K.C.; He, J.-Z. Effects of Nitrogen Application Rate and a Nitrification Inhibitor Dicyandiamide on Ammonia Oxidizers and N2O Emissions in a Grazed Pasture Soil. Sci. Total Environ. 2013, 465, 125–135. [Google Scholar] [CrossRef]
- Yue, P.; Zuo, X.; Li, K.; Cui, X.; Wang, S.; Misselbrook, T.; Liu, X. The Driving Effect of Nitrogen-Related Functional Microorganisms under Water and Nitrogen Addition on N2O Emission in a Temperate Desert. Sci. Total Environ. 2021, 772, 145470. [Google Scholar] [CrossRef]
- Yang, X.; Tang, S.; Ni, K.; Shi, Y.; Yi, X.; Ma, Q.; Cai, Y.; Ma, L.; Ruan, J. Long-Term Nitrogen Addition Increases Denitrification Potential and Functional Gene Abundance and Changes Denitrifying Communities in Acidic Tea Plantation Soil. Environ. Res. 2023, 216, 114679. [Google Scholar] [CrossRef]
- Blakemore, R. Critical Decline of Earthworms from Organic Origins under Intensive, Humic SOM-Depleting Agriculture. Soil. Syst. 2018, 2, 33. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Tie, L.; Liu, X.; Liu, X.; Zhao, A.; Lai, J.; Xiao, L.; You, C.; Huang, C. Effects of Nitrogen Addition on Soil Faunal Abundance: A Global Meta-analysis. Glob. Ecol. Biogeogr. 2022, 31, 1655–1666. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wu, Y.; Yu, Y.; Sun, J.; Mao, D.; Zhang, G. Intensified Effect of Nitrogen Forms on Dominant Phytoplankton Species Succession by Climate Change. Water Res. 2024, 264, 122214. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chen, K.; Du, Y.; Li, K.; Liu, Z.; Jeppesen, E.; Søndergaard, M. Increased Nitrogen Loading Boosts Summer Phytoplankton Growth by Alterations in Resource and Zooplankton Control: A Mesocosm Study. Front. Environ. Sci. 2021, 9, 772314. [Google Scholar] [CrossRef]
- Zhao, R.; Hannisdal, B.; Mogollon, J.M.; Jørgensen, S.L. Nitrifier Abundance and Diversity Peak at Deep Redox Transition Zones. Sci. Rep. 2019, 9, 8633. [Google Scholar] [CrossRef]
- Zhou, J.; Mogollón, J.M.; van Bodegom, P.M.; Barbarossa, V.; Beusen, A.H.W.; Scherer, L. Effects of Nitrogen Emissions on Fish Species Richness across the World’s Freshwater Ecoregions. Environ. Sci. Technol. 2023, 57, 8347–8354. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Yao, X.-L.; Zhang, J.; Liu, S.; Cao, H.-R.; Bai, S.; Chen, C.-Q.; Zhang, D.-X.; Xu, A.; et al. Inorganic Nitrogen Inhibits Symbiotic Nitrogen Fixation through Blocking NRAMP2-Mediated Iron Delivery in Soybean Nodules. Nat. Commun. 2024, 15, 8946. [Google Scholar] [CrossRef]
- Isobe, K.; Ise, Y.; Kato, H.; Oda, T.; Vincenot, C.E.; Koba, K.; Tateno, R.; Senoo, K.; Ohte, N. Consequences of Microbial Diversity in Forest Nitrogen Cycling: Diverse Ammonifiers and Specialized Ammonia Oxidizers. ISME J. 2020, 14, 12–25. [Google Scholar] [CrossRef]
- Tong, D.; Xu, R. Effects of Urea and (NH4)2SO4 on Nitrification and Acidification of Ultisols from Southern China. J. Environ. Sci. 2012, 24, 682–689. [Google Scholar] [CrossRef]
- Kayasth, M.; Gera, R.; Dudeja, S.S.; Sharma, P.K.; Kumar, V. Studies on Salinization in Haryana Soils on Free-living Nitrogen-fixing Bacterial Populations and Their Activity. J. Basic. Microbiol. 2014, 54, 170–179. [Google Scholar] [CrossRef]
- Li, X.; Wang, A.; Wan, W.; Luo, X.; Zheng, L.; He, G.; Huang, D.; Chen, W.; Huang, Q. High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. Appl. Environ. Microbiol. 2021, 87, e01366-21. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Oon, Y.-S.; Oon, Y.-L.; Khan, K.; Deng, M.; Li, L.; Song, K.; Jiang, X.; Xia, Z. Microplastics Transport and Impact on Nitrogen Cycling and N2O Emissions in Estuaries. Environ. Pollut. 2025, 383, 126869. [Google Scholar] [CrossRef] [PubMed]
- Broek, T.A.B.; McCarthy, M.D.; Ianiri, H.L.; Vaughn, J.S.; Mason, H.E.; Knapp, A.N. Dominant Heterocyclic Composition of Dissolved Organic Nitrogen in the Ocean: A New Paradigm for Cycling and Persistence. Proc. Natl. Acad. Sci. USA 2023, 120, e2305763120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ward, B.B.; Sigman, D.M. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem. Rev. 2020, 120, 5308–5351. [Google Scholar] [CrossRef]
- McCarthy, M.; Hedges, J.; Benner, R. Major Biochemical Composition of Dissolved High Molecular Weight Organic Matter in Seawater. Mar. Chem. 1996, 55, 281–297. [Google Scholar] [CrossRef]
- Rabalais, N.N. Nitrogen in Aquatic Ecosystems. AMBIO J. Hum. Environ. 2002, 31, 102–112. [Google Scholar] [CrossRef]
- Pajares, S.; Ramos, R. Processes and Microorganisms Involved in the Marine Nitrogen Cycle: Knowledge and Gaps. Front. Mar. Sci. 2019, 6, 739. [Google Scholar] [CrossRef]
- Arrigo, K.R. Marine Microorganisms and Global Nutrient Cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef]
- Lam, P.; Kuypers, M.M.M. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annu. Rev. Mar. Sci. 2011, 3, 317–345. [Google Scholar] [CrossRef]
- Tivig, M.; Keller, D.P.; Oschlies, A. Riverine Nitrogen Supply to the Global Ocean and Its Limited Impact on Global Marine Primary Production: A Feedback Study Using an Earth System Model. Biogeosciences 2021, 18, 5327–5350. [Google Scholar] [CrossRef]
- Raghoebarsing, A.A.; Pol, A.; van de Pas-Schoonen, K.T.; Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Schouten, S.; Damsté, J.S.S.; Op den Camp, H.J.M.; Jetten, M.S.M.; et al. A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification. Nature 2006, 440, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; et al. Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science 2008, 320, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of Hypoxia for Marine Biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef]
- Jickells, T.D.; Buitenhuis, E.; Altieri, K.; Baker, A.R.; Capone, D.; Duce, R.A.; Dentener, F.; Fennel, K.; Kanakidou, M.; LaRoche, J.; et al. A Reevaluation of the Magnitude and Impacts of Anthropogenic Atmospheric Nitrogen Inputs on the Ocean. Glob. Biogeochem. Cycles 2017, 31, 289–305. [Google Scholar] [CrossRef]
- Landolfi, A.; Dietze, H.; Koeve, W.; Oschlies, A. Overlooked Runaway Feedback in the Marine Nitrogen Cycle: The Vicious Cycle. Biogeosciences 2013, 10, 1351–1363. [Google Scholar] [CrossRef]
- Siriwardana, H.; Samarasekara, R.S.M.; Anthony, D.; Vithanage, M. Measurements and Analysis of Nitrogen and Phosphorus in Oceans: Practice, Frontiers, and Insights. Heliyon 2024, 10, e28182. [Google Scholar] [CrossRef]
- Allaerts, W. On Nitrogen, Anthropogenic Aerosols, Farmland and Biodiversity Estimation. Austin Environ. Sci. 2022, 7, 1086. [Google Scholar] [CrossRef]
- Delbaere, B.; Whitfield, C.; Evans, D. Impact of Atmospheric Nitrogen Deposition on Biodiversity; European Environment Agency: Copenhagen, Denmark, 2014.
- Li, X.; Maring, H.; Savoie, D.; Voss, K.; Prospero, J.M. Dominance of Mineral Dust in Aerosol Light-Scattering in the North Atlantic Trade Winds. Nature 1996, 380, 416–419. [Google Scholar] [CrossRef]
- Schlangen, I.; Leon-Palmero, E.; Moser, A.; Xu, P.; Laursen, E.; Löscher, C.R. Nitrogen Fixation in Arctic Coastal Waters (Qeqertarsuaq, West Greenland): Influence of Glacial Melt on Diazotrophs, Nutrient Availability, and Seasonal Blooms. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Liang, J.; Qi, X.; Souza, L.; Luo, Y. Processes Regulating Progressive Nitrogen Limitation under Elevated Carbon Dioxide: A Meta-Analysis. Biogeosciences 2016, 13, 2689–2699. [Google Scholar] [CrossRef]
- Liao, H.; Zheng, C.; Li, J.; Long, J.; Li, Y.; Yao, H. Factors Influencing the Global Distribution of Soil Free-Living Nitrogen Fixation in Terrestrial Ecosystems. Appl. Soil. Ecol. 2025, 213, 106285. [Google Scholar] [CrossRef]
- Fu, Y.; Ren, X.; Zhu, B. Responses of Soil Nitrogen Transformation and N2O Emission to Soil PH and Hydrothermal Changes. Agronomy 2025, 15, 1005. [Google Scholar] [CrossRef]
- Zhao, Y.; Luan, J.-W.; Wang, Y.; Yang, H.; Liu, S.-R. Effects of Simulated Drought and Phosphorus Addition on Nitrogen Mineralization in Tropical Lowland Rain Forests. Chin. J. Plant Ecol. 2022, 46, 102–113. [Google Scholar] [CrossRef]
- Mao, C.; Wang, Y.; Ran, J.; Wang, C.; Yang, Z.; Yang, Y. Effects of Warming and Precipitation Change on Soil Nitrogen Cycles: A Meta-Analysis. J. Plant Ecol. 2025, 18, rtaf051. [Google Scholar] [CrossRef]
- Le, T.T.H.; Fettig, J.; Meon, G. Kinetics and Simulation of Nitrification at Various PH Values of a Polluted River in the Tropics. Ecohydrol. Hydrobiol. 2019, 19, 54–65. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Chen, P.; Yuan, S.; Wang, K.; Wang, S.; Jiang, X. Role of Nitrogen Cycling Functional Genes and Their Key Influencing Factors in Eutrophic Aquatic Ecosystems. Environ. Rev. 2025, 33, 1–10. [Google Scholar] [CrossRef]
- Wan, R.; Chen, Y.; Zheng, X.; Su, Y.; Li, M. Effect of CO2 on Microbial Denitrification via Inhibiting Electron Transport and Consumption. Environ. Sci. Technol. 2016, 50, 9915–9922. [Google Scholar] [CrossRef]
- Liu, B.; Mørkved, P.T.; Frostegård, Å.; Bakken, L.R. Denitrification Gene Pools, Transcription and Kinetics of NO, N2O and N2 Production as Affected by Soil PH. FEMS Microbiol. Ecol. 2010, 72, 407–417. [Google Scholar] [CrossRef]
- Tan, E.; Zou, W.; Zheng, Z.; Yan, X.; Du, M.; Hsu, T.-C.; Tian, L.; Middelburg, J.J.; Trull, T.W.; Kao, S. Warming Stimulates Sediment Denitrification at the Expense of Anaerobic Ammonium Oxidation. Nat. Clim. Change 2020, 10, 349–355. [Google Scholar] [CrossRef]
- Xie, H.; Ji, D.; Zang, L. Effects of Inhibition Conditions on Anammox Process. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012149. [Google Scholar] [CrossRef]
- Rai, R. High-Temperature-Adapted Azospirillum brasilense Strains: Growth and Interaction Response on Associative Nitrogen Fixation, Mineral Uptake and Yield of Cheena ( Panicum miliaceum L.) Genotypes in Calcareous Soil. J. Agric. Sci. 1988, 110, 321–329. [Google Scholar] [CrossRef]
- Breitbarth, E.; Oschlies, A.; LaRoche, J. Physiological Constraints on the Global Distribution of Trichodesmium—Effect of Temperature on Diazotrophy. Biogeosciences 2007, 4, 53–61. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Wang, D.; Ma, J.; Xue, K.; An, Z.; Luo, W.; Sheng, Y. Effects of Temperature and Humidity on Soil Gross Nitrogen Transformation in a Typical Shrub Ecosystem in Yanshan Mountain and Hilly Region. Life 2023, 13, 643. [Google Scholar] [CrossRef]
- Taylor, A.E.; Giguere, A.T.; Zoebelein, C.M.; Myrold, D.D.; Bottomley, P.J. Modeling of Soil Nitrification Responses to Temperature Reveals Thermodynamic Differences between Ammonia-Oxidizing Activity of Archaea and Bacteria. ISME J. 2017, 11, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Wang, C.; Liu, X.; Liu, M. Earthworm Regulation of Nitrogen Pools and Dynamics and Marker Genes of Nitrogen Cycling: A Meta-Analysis. Pedosphere 2022, 32, 131–139. [Google Scholar] [CrossRef]
- Marhan, S.; Auber, J.; Poll, C. Additive Effects of Earthworms, Nitrogen-Rich Litter and Elevated Soil Temperature on N2O Emission and Nitrate Leaching from an Arable Soil. Appl. Soil. Ecol. 2015, 86, 55–61. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W. Effects of Temperature and Soil Moisture on Gross Nitrification and Denitrification Rates of a Chinese Lowland Paddy Field Soil. Paddy Water Environ. 2018, 16, 687–698. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Wan, Y.; Li, Y.; Cai, W.; Guo, C.; Qin, X.; Song, C.; Wilkes, A. Air Warming and CO2 Enrichment Cause More Ammonia Volatilization from Rice Paddies: An OTC Field Study. Sci. Total Environ. 2021, 752, 142071. [Google Scholar] [CrossRef]
- Mills, M.M.; Arrigo, K.R. Magnitude of Oceanic Nitrogen Fixation Influenced by the Nutrient Uptake Ratio of Phytoplankton. Nat. Geosci. 2010, 3, 412–416. [Google Scholar] [CrossRef]
- Huỳnh, T.; Horváth, Z.; Pálffy, K.; Kardos, V.; Szabó, B.; Dobosy, P.; Vad, C.F. Heatwave-induced Functional Shifts in Zooplankton Communities Result in Weaker Top-down Control on Phytoplankton. Ecol. Evol. 2024, 14, e70096. [Google Scholar] [CrossRef]
- Wan, X.S.; Sheng, H.; Dai, M.; Church, M.J.; Zou, W.; Li, X.; Hutchins, D.A.; Ward, B.B.; Kao, S. Phytoplankton-Nitrifier Interactions Control the Geographic Distribution of Nitrite in the Upper Ocean. Glob. Biogeochem. Cycles 2021, 35, e2021GB007072. [Google Scholar] [CrossRef]
- Urrutia-Cordero, P.; Zhang, H.; Chaguaceda, F.; Geng, H.; Hansson, L. Climate Warming and Heat Waves Alter Harmful Cyanobacterial Blooms along the Benthic–Pelagic Interface. Ecology 2020, 101, e03025. [Google Scholar] [CrossRef] [PubMed]
- Mushinski, R.M.; Payne, Z.C.; Raff, J.D.; Craig, M.E.; Pusede, S.E.; Rusch, D.B.; White, J.R.; Phillips, R.P. Nitrogen Cycling Microbiomes Are Structured by Plant Mycorrhizal Associations with Consequences for Nitrogen Oxide Fluxes in Forests. Glob. Change Biol. 2021, 27, 1068–1082. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, A.A.; Hondzo, M.; Kozarek, J.L.; Staley, C.; Wang, P.; Lurndahl, N.; Sadowsky, M.J. Intermittent Flooding of Organic-rich Soil Promotes the Formation of Denitrification Hot Moments and Hot Spots. Ecosphere 2019, 10, e02549. [Google Scholar] [CrossRef]
- Guntiñas, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Gil-Sotres, F. Effects of Moisture and Temperature on Net Soil Nitrogen Mineralization: A Laboratory Study. Eur. J. Soil. Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, H.; Wang, X.; Ma, R.; Lin, C. Response of Soil Fertility to Soil Erosion on a Regional Scale: A Case Study of Northeast China. J. Clean. Prod. 2024, 434, 140360. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Kim, D.-G.; Li, J.; Liu, Y.; Hai, X.; Liu, Q.; Huang, C.; Shangguan, Z.; Kuzyakov, Y. Drought Effects on Soil Carbon and Nitrogen Dynamics in Global Natural Ecosystems. Earth Sci. Rev. 2021, 214, 103501. [Google Scholar] [CrossRef]
- Chen, J.; Kuzyakov, Y.; Jenerette, G.D.; Xiao, G.; Liu, W.; Wang, Z.; Shen, W. Intensified Precipitation Seasonality Reduces Soil Inorganic N Content in a Subtropical Forest: Greater Contribution of Leaching Loss Than N2O Emissions. J. Geophys. Res. Biogeosci 2019, 124, 494–508. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, W.; Wang, S.; Ma, L.; Min, L.; Shen, Y. Variation of Nitrate Sources Affected by Precipitation with Different Intensities in Groundwater in the Piedmont Plain Area of Alluvial-Pluvial Fan. J. Environ. Manag. 2024, 367, 121885. [Google Scholar] [CrossRef]
- Han, H.; Xiao, R.; Gao, G.; Yin, B.; Liang, S.; lv, X. Influence of a Heavy Rainfall Event on Nutrients and Phytoplankton Dynamics in a Well-Mixed Semi-Enclosed Bay. J. Hydrol. 2023, 617, 128932. [Google Scholar] [CrossRef]
- Rahav, E.; Ovadia, G.; Paytan, A.; Herut, B. Contribution of Airborne Microbes to Bacterial Production and N2 Fixation in Seawater upon Aerosol Deposition. Geophys. Res. Lett. 2016, 43, 719–727. [Google Scholar] [CrossRef]
- Na, H.; Qi, J.; Zhen, Y.; Yao, X.; Gao, H. Asian Dust-Transported Bacteria Survive in Seawater and Alter the Community Structures of Coastal Bacterioplankton in the Yellow Sea. Glob. Planet. Change 2023, 224, 104115. [Google Scholar] [CrossRef]
- Genitsaris, S.; Stefanidou, N.; Beeri-Shlevin, Y.; Viner-Mozzini, Y.; Moustaka-Gouni, M.; Ninio, S.; Sukenik, A. Air-Dispersed Aquatic Microorganisms Show Establishment and Growth Preferences in Different Freshwater Colonisation Habitats. FEMS Microbiol. Ecol. 2021, 97, fiab122. [Google Scholar] [CrossRef]
- Mattoo, R. Targeting Emerging Mycobacterium avium Infections: Perspectives into Pathways and Antimicrobials for Future Interventions. Future Microbiol. 2021, 16, 753–764. [Google Scholar] [CrossRef]
- Meng, X.; Yao, F.; Zhang, J.; Liu, Q.; Liu, Q.; Shi, L.; Zhang, D. Impact of Dust Deposition on Phytoplankton Biomass in the Northwestern Pacific: A Long-Term Study from 1998 to 2020. Sci. Total Environ. 2022, 813, 152536. [Google Scholar] [CrossRef]
- Saiz, E.; Sgouridis, F.; Drijfhout, F.P.; Peichl, M.; Nilsson, M.B.; Ullah, S. Chronic Atmospheric Reactive Nitrogen Deposition Suppresses Biological Nitrogen Fixation in Peatlands. Environ. Sci. Technol. 2021, 55, 1310–1318. [Google Scholar] [CrossRef]
- Larmola, T.; Leppänen, S.M.; Tuittila, E.-S.; Aarva, M.; Merilä, P.; Fritze, H.; Tiirola, M. Methanotrophy Induces Nitrogen Fixation during Peatland Development. Proc. Natl. Acad. Sci. USA 2014, 111, 734–739. [Google Scholar] [CrossRef]
- Dong, X.; Lin, H.; Wang, F.; Shi, S.; Sharifi, S.; Wang, S.; Ma, J.; He, X. Elevated CO2 and Nitrogen Supply Boost N Use Efficiency and Wheat (T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization. Plants 2024, 13, 2345. [Google Scholar] [CrossRef]
- Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Rogers, A.; Long, S.P.; Ort, D.R. Elevated CO2 Effects on Plant Carbon, Nitrogen, and Water Relations: Six Important Lessons from FACE. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.H.; Naeem, S.; Trost, J. Nitrogen Limitation Constrains Sustainability of Ecosystem Response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef]
- Zhang, K.; Lei, W.; Zhang, H.; Xu, C.; Xiao, J.; Li, S.; Liang, M.; He, J.; Lai, Y.; Li, R.; et al. Inhibition of Autotrophic Nitrifiers in a Nitrogen-Rich Paddy Soil by Elevated CO2. Nat. Geosci. 2024, 17, 1254–1260. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X. Why Are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the Hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, F.; Hao, L.; Yu, J.; Guo, L.; Zhou, H.; Ma, C.; Zhang, X.; Xu, M. Elevated CO2 Concentration Induces Photosynthetic Down-Regulation with Changes in Leaf Structure, Non-Structural Carbohydrates and Nitrogen Content of Soybean. BMC Plant Biol. 2019, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Shen, R.; Zhang, F.; Wen, Z.; Chang, S.; Lin, W.; Kranz, S.A.; Luo, Y.-W.; Kao, S.-J.; Morel, F.M.M.; et al. The Complex Effects of Ocean Acidification on the Prominent N2–Fixing Cyanobacterium Trichodesmium. Science 2017, 356, 527–531. [Google Scholar] [CrossRef]
- Shi, W.; Fu, X.; Han, Y.; Qin, J.; Sun, J. Impact of Ocean Acidification on Microzooplankton Grazing Dynamics. Front. Mar. Sci. 2024, 11, 1414932. [Google Scholar] [CrossRef]
- Elsayed, H.; Beusen, A.; Prusty, A.K.; Bouwman, L. Long-Term Variations (1970–2020) and Spatial Patterns of Nitrogen and Phosphorus Soil Budgets and Fates in Indian Agriculture. Nutr. Cycl. Agroecosyst. 2025, 130, 17–32. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, G.; Han, Q.; Zhang, J.; Dang, H.; Ning, H.; Gao, Y.; Sun, J. Long-Term Saline Water Irrigation Affected Soil Carbon and Nitrogen Cycling Functional Profiles in the Cotton Field. Front. Microbiol. 2024, 15, 1310387. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Newell, S.E.; Carini, S.A.; Gardner, W.S. Denitrification Dominates Sediment Nitrogen Removal and Is Enhanced by Bottom-Water Hypoxia in the Northern Gulf of Mexico. Estuaries Coasts 2015, 38, 2279–2294. [Google Scholar] [CrossRef]
- Song, G.; Liu, S.; Zhang, J.; Zhu, Z.; Zhang, G.; Marchant, H.K.; Kuypers, M.M.M.; Lavik, G. Response of Benthic Nitrogen Cycling to Estuarine Hypoxia. Limnol. Oceanogr. 2021, 66, 652–666. [Google Scholar] [CrossRef]
- Wong, W.W.; Greening, C.; Shelley, G.; Lappan, R.; Leung, P.M.; Kessler, A.; Winfrey, B.; Poh, S.C.; Cook, P. Effects of Drift Algae Accumulation and Nitrate Loading on Nitrogen Cycling in a Eutrophic Coastal Sediment. Sci. Total Environ. 2021, 790, 147749. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Ji, L.; Ma, L.; Ruan, J. Heavy Nitrogen Application Increases Soil Nitrification through Ammonia-Oxidizing Bacteria Rather than Archaea in Acidic Tea (Camellia sinensis L.) Plantation Soil. Sci. Total Environ. 2020, 717, 137248. [Google Scholar] [CrossRef]
- Calderón, R.; Albornoz, F.; Jara, C.; Palma, P.; Arancibia-Miranda, N.; Manquián-Cerda, K.; Herrera, C.; Urrutia, J.; Gamboa, C.; Karthikraj, R.; et al. Exploring the Uptake, Accumulation, and Distribution of Nitrate in Swiss Chard and Spinach and Their Impact on Food Safety and Human Health. Food Chem. 2025, 467, 142345. [Google Scholar] [CrossRef] [PubMed]
- Atakisi, E.; Merhan, O. Nitric Oxide Synthase and Nitric Oxide Involvement in Different Toxicities. In Nitric Oxide Synthase—Simple Enzyme-Complex Roles; InTech: London, UK, 2017. [Google Scholar]
- Mattoo, R.; Nagaraju, U. Why Should We Worry about Soil Health? Curr. Sci. 2025, 128, 431–432. [Google Scholar]
- César, A.C.G.; Carvalho, J.A., Jr.; Nascimento, L.F.C. Association between NOx Exposure and Deaths Caused by Respiratory Diseases in a Medium-Sized Brazilian City. Braz. J. Med. Biol. Res. 2015, 48, 1130–1135. [Google Scholar] [CrossRef]
- Yang, S.; Hao, D.; Jin, M.; Li, Y.; Liu, Z.; Huang, Y.; Chen, T.; Su, Y. Internal Ammonium Excess Induces ROS-Mediated Reactions and Causes Carbon Scarcity in Rice. BMC Plant Biol. 2020, 20, 143. [Google Scholar] [CrossRef]
- Wang, Y.; Di, B.; Sun, Z.; Sonali; Donovan-Mak, M.; Chen, Z.; Wang, M. Multi-Omics and Physiological Analysis Reveal Crosstalk Between Aphid Resistance and Nitrogen Fertilization in Wheat. Plant Cell Environ. 2025, 48, 2024–2039. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Singh, A.; Dash, S.P.; Mallick, N.; Clerbaux, C.; Van Damme, M.; Clarisse, L.; Coheur, P.-F.; Raj, S.; Abbhishek, K.; et al. Record High Levels of Atmospheric Ammonia over India: Spatial and Temporal Analyses. Sci. Total Environ. 2020, 740, 139986. [Google Scholar] [CrossRef]
- Meng, C.; Xing, Y.; Ding, Y.; Zhang, Q.; Di, H.; Tang, C.; Xu, J.; Li, Y. Soil Acidification Induced Variation of Nitrifiers and Denitrifiers Modulates N2O Emissions in Paddy Fields. Sci. Total Environ. 2023, 882, 163623. [Google Scholar] [CrossRef]
- He, W.; Ma, W.; Du, J.; Chang, W.; Li, G. Effect of Vegetation Degradation on Soil Nitrogen Components and N-Cycling Enzyme Activities in a Wet Meadow on the Qinghai–Tibetan Plateau. Plants 2025, 14, 1549. [Google Scholar] [CrossRef]
- Xu, M.; Fan, L.; Li, A.; Liu, Q.; Yu, G.; Wang, S.; Zhang, B.; Ye, Q.; Mo, J.; Zheng, M. Plant and Microbial Carbon Are Important Drivers of Free-Living Nitrogen Fixation in Tropical Forest Soils: A New Discovery of Carbon-Driven Nitrogen Input. Geophys. Res. Lett. 2024, 51, e2024GL111238. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, H.; Liu, J.; Yao, Y.; Wang, X.; Rong, G.; Zhao, X.; Shao, M.; Wei, X. Soil Erosion Significantly Reduces Organic Carbon and Nitrogen Mineralization in a Simulated Experiment. Agric. Ecosyst. Environ. 2021, 307, 107232. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, Y.; Doyle, E.; Zhu, C.; Jin, X.; Chen, Z.; Wang, C.; He, H.; Zhou, D.; Gu, C. Microplastics Altered Soil Microbiome and Nitrogen Cycling: The Role of Phthalate Plasticizer. J. Hazard. Mater. 2022, 427, 127944. [Google Scholar] [CrossRef]
- Seeley, M.E.; Song, B.; Passie, R.; Hale, R.C. Microplastics Affect Sedimentary Microbial Communities and Nitrogen Cycling. Nat. Commun. 2020, 11, 2372. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Kanter, D.R.; Lassaletta, L.; Móring, A.; Raghuram, N.; Read, N. The Nitrogen Decade: Mobilizing Global Action on Nitrogen to 2030 and Beyond. One Earth 2021, 4, 10–14. [Google Scholar] [CrossRef]
Soil Biodiversity | Temporal Scale of Experiments | ||
---|---|---|---|
Group | Response to Nitrogen Enrichment | Reference | |
Diazotrophs | While some populations manage to sustain activity despite high N deposition, others decline. | [39] | The experiments were carried out with low N treatment: 3 years (2013–2016) and high N: 9 years (2007–2016). In forest soils, diazotrophs maintain N fixation under heavy N deposition by modifying the composition of their communities. |
Ammonia oxidizing bacteria | When N application is high, abundance rises. | [40] | Experiments from May 2011 to August 2011. In particular, AOB populations rose under high N soil environment. |
Ammonia oxidizing archaea | Under high N, abundance and activity rise. | [41] | Experiments in 2015 and 2016. |
Denitrifiers | Under high N deposition, abundance and activity rise. | [42] | In this long-term (12 years) most genera got enriched with increasing N rates, except for Sphingobium and few others that reduced in numbers. |
Earthworms | Some thrive with organic matter, others decline in acidified N-rich soils | [43] | Park Grass pasture studies (started in 1843) which demonstrated that earthworms decline during nitrogen addition versus organic farming |
Nematodes | N addition decreases abundance of fungivores, plant-parasites, and omnivores + predators. No significant effect on except for bacterivores | [44] | Experiments during 1970–2021 demonstrated deleterious effect on soil fauna |
Aquatic biodiversity | |||
Cyanobacteria/ Phytoplanktons | Increase significantly under high N availability (blooms) | [45,46] | Experiments carried out from 2012 to 2022 and in 2020 |
Nitrifiers and denitrifiers in sediments | Active in nutrient-rich, hypoxic zones | [47] | Integrated Ocean Drilling Program (IODP) Expedition 336 demonstrated quantitative information on ocean nitrogen cycle. |
Fish | Loss of species due to N enrichment (hypoxia) | [48] | Estimates from 1970 to 2010 |
Nitrogen Transformation Process | Chemical Reaction with Enzymes Involved | Climate Impacts | Reference |
---|---|---|---|
Nitrogen fixation | N2 → NH3 Nitrogenase |
| [73,74] |
Ammonification | Organic N → NH3 Urease and protease |
| [75,76] |
Nitrification | NH3 → NH2OH Ammonia monooxygenase (AMO) NH2OH →NO → NO2− Hydroxylamine oxidoreductase (HOR) NO2− → NO3− Nitrite oxidoreductase (NXR) |
| [77,78] |
Denitrification | NO3− → NO2− Nitrate reductase (NAR/NAP) NO2− → NO (g) Nitrite reductase (NIR) NO → N2O Nitric oxide reductase (NOR) N2O → N2 Nitrous oxide reductase (NOS) |
| [79,80,81] |
Anammox | NH4+ + NO2− → N2H4 + H2O Hydrazine synthase (HZS) N2H4 → N2 + 4H+ + 4e− Hydrazine dehydrogenase (HDH) |
| [82,83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattoo, R.; Mallikarjuna, S.B.; Hemachar, N. Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity. Nitrogen 2025, 6, 78. https://doi.org/10.3390/nitrogen6030078
Mattoo R, Mallikarjuna SB, Hemachar N. Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity. Nitrogen. 2025; 6(3):78. https://doi.org/10.3390/nitrogen6030078
Chicago/Turabian StyleMattoo, Rohini, Suman B. Mallikarjuna, and Naveenachar Hemachar. 2025. "Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity" Nitrogen 6, no. 3: 78. https://doi.org/10.3390/nitrogen6030078
APA StyleMattoo, R., Mallikarjuna, S. B., & Hemachar, N. (2025). Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity. Nitrogen, 6(3), 78. https://doi.org/10.3390/nitrogen6030078