Special Issue "Plasma for Energy and Catalytic Nanomaterials"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: closed (20 August 2019).

Special Issue Editors

Guest Editor
Prof. Lanbo Di Website E-Mail
College of Physical Science and Technology, Dalian University, Dalian 116622, China
Interests: cold plasma; nanomaterials; plasma chemistry; supported metal catalysts
Guest Editor
Prof. Feng Yu Website E-Mail
The Recruitment Program of Global Experts, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
Interests: cold plasma; catalytic nanomaterials; energy nanomaterials; plasma catalysis

Special Issue Information

Dear Colleagues,

Nanomaterials preparation is gaining increasing interest for energy and catalytic applications, such as methane reforming, Fischer-Tropsch synthesis, oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), VOCs removal and CO preferential oxidation (PROX), etc. The plasma method allows thermodynamically and dynamically difficult reactions to proceed at low temperatures due to the activation of energetic electrons. Compared to conventional preparation methods, it has been proven to be a fast, facile and environmentally-friendly method for synthesizing highly-efficient nanomaterials. The synthesized nanomaterials generally show enhanced metal-support interactions, small sizes of metal nanoparticles, specific metal structures, abundant oxygen vacancies, etc. Therefore, they exhibit high catalytic activity and stability in energy and catalytic applications.  In spite of the growing interest in plasma for energy and catalytic nanomaterials, synthesis mechanisms of nanomaterials using plasma still remains obscure due to the complicated physical and chemical reactions during plasma preparation. A great deal of research is needed to better understand the controllable preparation mechanisms of the plasma method and widen its application scope in synthesizing energy and catalytic nanomaterials. Submissions to this Special Issue are welcome in the form of original research papers or short reviews that cover the synthesis and applications of energy and catalytic nanomaterials by plasma.

Prof. Lanbo Di
Prof. Feng Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plasma
  • Nanomaterials
  • Catalytic applications
  • Energy applications
  • Dielectric barrier discharge

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Effective Oxygen Reduction Reaction Performance of FeCo Alloys In Situ Anchored on Nitrogen-Doped Carbon by the Microwave-Assistant Carbon Bath Method and Subsequent Plasma Etching
Nanomaterials 2019, 9(9), 1284; https://doi.org/10.3390/nano9091284 - 08 Sep 2019
Abstract
Electrocatalysts with strong stability and high electrocatalytic activity have received increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck problems concerning stability, efficiency, [...] Read more.
Electrocatalysts with strong stability and high electrocatalytic activity have received increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck problems concerning stability, efficiency, and cost, which prevent the development of ORR catalysts. Herein, we prepared bimetal FeCo alloy nanoparticles wrapped in Nitrogen (N)-doped graphitic carbon, using Co-Fe Prussian blue analogs (Co3[Fe(CN)6]2, Co-Fe PBA) by the microwave-assisted carbon bath method (MW-CBM) as a precursor, followed by dielectric barrier discharge (DBD) plasma treatment. This novel preparation strategy not only possessed a fast synthesis rate by MW-CBM, but also caused an increase in defect sites by DBD plasma treatment. It is believed that the co-existence of Fe/Co-N sites, rich active sites, core-shell structure, and FeCo alloys could jointly enhance the catalytic activity of ORRs. The obtained catalyst exhibited a positive half-wave potential of 0.88 V vs. reversible hydrogen electrode (RHE) and an onset potential of 0.95 V vs. RHE for ORRs. The catalyst showed a higher selectivity and long-term stability than Pt/C towards ORR in alkaline media. Full article
(This article belongs to the Special Issue Plasma for Energy and Catalytic Nanomaterials)
Show Figures

Graphical abstract

Open AccessArticle
A Novel Route to Manufacture 2D Layer MoS2 and g-C3N4 by Atmospheric Plasma with Enhanced Visible-Light-Driven Photocatalysis
Nanomaterials 2019, 9(8), 1139; https://doi.org/10.3390/nano9081139 - 08 Aug 2019
Abstract
An atmospheric plasma treatment strategy was developed to prepare two-dimensional (2D) molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) nanosheets from (NH4)2MoS4 and bulk g-C3N4, respectively. The moderate [...] Read more.
An atmospheric plasma treatment strategy was developed to prepare two-dimensional (2D) molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) nanosheets from (NH4)2MoS4 and bulk g-C3N4, respectively. The moderate temperature of plasma is beneficial for exfoliating bulk materials to thinner nanosheets. The thicknesses of as-prepared MoS2 and g-C3N4 nanosheets are 2–3 nm and 1.2 nm, respectively. They exhibited excellent photocatalytic activity on account of the nanosheet structure, larger surface area, more flexible photophysical properties, and longer charge carrier average lifetime. Under visible light irradiation, the hydrogen production rates of MoS2 and g-C3N4 by plasma were 3.3 and 1.5 times higher than the corresponding bulk materials, respectively. And g-C3N4 by plasma exhibited 2.5 and 1.3 times degradation rates on bulk that for methyl orange and rhodamine B, respectively. The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electron play the key roles in the plasma exfoliation. Plasma as an environmentally benign approach provides a general platform for fabricating ultrathin nanosheet materials with prospective applications as photocatalysts for pollutant degradation and water splitting. Full article
(This article belongs to the Special Issue Plasma for Energy and Catalytic Nanomaterials)
Show Figures

Graphical abstract

Open AccessArticle
A Surface Dielectric Barrier Discharge Plasma for Preparing Cotton-Fabric-Supported Silver Nanoparticles
Nanomaterials 2019, 9(7), 961; https://doi.org/10.3390/nano9070961 - 01 Jul 2019
Abstract
Cotton-fabric-supported silver nanoparticles (Ag NPs) have aroused great attention due to their remarkable physical and chemical properties and excellent broad-spectrum antibacterial performance.In this work, a surface dielectric barrier discharge (DBD) plasma method is developed and employed to prepare cotton fabric supported Ag NPs [...] Read more.
Cotton-fabric-supported silver nanoparticles (Ag NPs) have aroused great attention due to their remarkable physical and chemical properties and excellent broad-spectrum antibacterial performance.In this work, a surface dielectric barrier discharge (DBD) plasma method is developed and employed to prepare cotton fabric supported Ag NPs (Ag/cotton) for the first time. UV-Vis and X-ray photoelectron spectroscopy (XPS) results confirm the formation of Ag NPs. TEM images show that the size of Ag NPs is in the range 4.8–5.3 nm. Heat-sensitive cotton fabrics are not destroyed by surface DBD plasma according to FTIR and XRDresults. Wash fastness of the Ag/cotton samples is investigated using ultrasonic treatment for 30 min and it is shown that the Ag NPs possess good adhesion to the cotton fabric according to UV-Vis spectra. Antibacterial activity of the Ag/cotton samples shows that obvious bacteriostasis loops are observed around the samples with the appearance of both Gram-negative bacterium Escherichia coli (E. coli) and Gram-positive bacterium Bacillus subtilis (B. subtilis). The average diameter of the bacteriostasis loops against both E. coli and B. subtilis becomes larger with an increasing silver loading amount.This work provides a universal, fast, simple, and environmentally-friendly cold plasma method for synthesizing Ag NPs on heat-sensitive materials at atmospheric pressure. Full article
(This article belongs to the Special Issue Plasma for Energy and Catalytic Nanomaterials)
Show Figures

Figure 1

Open AccessArticle
High-Resolution SEM and EDX Characterization of Deposits Formed by CH4+Ar DBD Plasma Processing in a Packed Bed Reactor
Nanomaterials 2019, 9(4), 589; https://doi.org/10.3390/nano9040589 - 10 Apr 2019
Abstract
The deposits formed during the DBD plasma conversion of CH4 were characterized by high-resolution scanning electron microscopy (HRSEM) and energy dispersive X-ray elemental analysis (EDX) for both cases of a non-packed reactor and a packed reactor. For the non-packed plasma reactor, a [...] Read more.
The deposits formed during the DBD plasma conversion of CH4 were characterized by high-resolution scanning electron microscopy (HRSEM) and energy dispersive X-ray elemental analysis (EDX) for both cases of a non-packed reactor and a packed reactor. For the non-packed plasma reactor, a layer of deposits was formed on the dielectric surface. HRSEM images in combination with EDX and CHN elemental analysis of this layer revealed that the deposits are made of a polymer-like layer with a high content of hydrogen (60 at%), possessing an amorphous structure. For the packed reactor, γ-alumina, Pd/γ-alumina, BaTiO3, silica-SBA-15, MgO/Al2O3, and α-alumina were used as the packing materials inside the DBD discharges. Carbon-rich agglomerates were formed on the γ-alumina after exposure to plasma. The EDX mapping furthermore indicated the carbon-rich areas in the structure. In contrast, the formation of agglomerates was not observed for Pd-loaded γ-alumina. This was ascribed to the presence of Pd, which enhances the hydrogenation of deposit precursors, and leads to a significantly lower amount of deposits. It was further found that the structure of all other plasma-processed materials, including MgO/Al2O3, silica-SBA-15, BaTiO3, and α-alumina, undergoes morphological changes. These alterations appeared in the forms of the generation of new pores (voids) in the structure, as well as the moderation of the surface roughness towards a smoother surface after the plasma treatment. Full article
(This article belongs to the Special Issue Plasma for Energy and Catalytic Nanomaterials)
Show Figures

Figure 1

Open AccessArticle
Atmospheric-Pressure Cold Plasma Activating Au/P25 for CO Oxidation: Effect of Working Gas
Nanomaterials 2018, 8(9), 742; https://doi.org/10.3390/nano8090742 - 19 Sep 2018
Cited by 4
Abstract
Commercial TiO2 (P25) supported gold (Au/P25) attracts increasing attention. In this work, atmospheric-pressure (AP) cold plasma was employed to activate the Au/P25-As catalyst prepared by a modified impregnation method. The influence of cold plasma working gas (oxygen, argon, hydrogen, and air) on [...] Read more.
Commercial TiO2 (P25) supported gold (Au/P25) attracts increasing attention. In this work, atmospheric-pressure (AP) cold plasma was employed to activate the Au/P25-As catalyst prepared by a modified impregnation method. The influence of cold plasma working gas (oxygen, argon, hydrogen, and air) on the structure and performance of the obtained Au/P25 catalysts was investigated. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and X-ray spectroscopy (XPS) were adopted to characterize the Au/P25 catalysts. CO oxidation was used as model reaction probe to test the Au/P25 catalyst. XRD results reveal that supporting gold and AP cold plasma activation have little effect on the P25 support. CO oxidation activity over the Au/P25 catalysts follows the order: Au/P25-O2P > Au/P25-As > Au/P25-ArP ≈ Au/P25-H2P > Au/P25-AirP. Au/P25-AirP presents the poorest CO oxidation catalytic activity among the Au/P25 catalysts, which may be ascribed to the larger size of gold nanoparticles, low concentration of active [O]s, as well as the poisoning [NOx]s. The poor catalytic performance of Au/P25-ArP and Au/P25-H2P is ascribed to the lower concentration of [O]s species. 100% CO conversion temperatures for Au/P25-O2P is 40 °C, which is 30 °C lower than that over the as-prepared Au/P25-As catalyst. The excellent CO oxidation activity over Au/P25-O2P is mainly attributed to the efficient decomposition of gold precursor species, small size of gold nanoparticles, and the high concentration of [O]s species. Full article
(This article belongs to the Special Issue Plasma for Energy and Catalytic Nanomaterials)
Show Figures

Figure 1

Back to TopTop