Special Issue "Nanoscale Surface Engineering"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 30 June 2019

Special Issue Editors

Guest Editor
Dr. Stéphane Mornet

Institut de Chimie de la Matière Condensée de Bordeaux CNRS, University of Bordeaux, Bordeaux-INP, Pessac 33600, France
Website | E-Mail
Guest Editor
Dr. Glenna Drisko

Institut de Chimie de la Matière Condensée de Bordeaux CNRS, University of Bordeaux, Bordeaux-INP, Pessac 33600, France
Website | E-Mail
Interests: Materials for optics ; Dielectric nanoparticles ; Hybrid materials ; Nanoparticle assembly ; Sol-gel chemistry ; Crystallization ; Structural control/Templating.

Special Issue Information

Dear Colleagues,

Nanoscale surface engineering refers to the design of physical, morphological and interfacial properties of nanoparticles or 2D nanostructured surfaces for a particular application. The surface chemistry of nanomaterials impacts an assortment of specific physical properties, such as magnetism, optics, electronics, catalysis and toxicity. Ligands and other surface molecules often play a major role in nanoparticle growth, form and crystallinity, in addition to bring new features such as (bio)chemical functional moieties, new interactions with the surrounding medium and adjusting the hydrophilic/lipophilic balance. Complex nanoparticle morphologies such as stars, core-shell, patchy and Janus nanoparticles are possible thanks to surface chemistry. Mastering nanoparticle self-assembly requires a solid knowledge of the surface chemistry, as the surface heavily influences particle-particle and particle-substrate attractive/repulsive forces. Surface chemistry can be used to chemically stabilize nanoparticles for instance, in processes involving high temperature treatments, against (photo)oxidization, or to protect the material from corrosion. This Special Issue will include, but not be limited to, any kind of nanoscale surface modification strategies addressing critical issues in fields related to nanotechnologies such as biomaterials, nanomedicine, plasmonics, metamaterials, energy harvesting, nanoelectronics, spintronics, and smart materials, among others. Through this plethora of topics, this issue will illustrate the fundamental nature of surface chemistry to material functionality, tunability and longevity.

Dr. Stéphane Mornet
Dr. Glenna Drisko
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Surface nanoengineering
  • Reactive surfaces
  • Multifunctional materials
  • Colloidal assembly
  • Colloidal stabilization in complex media
  • (Bio)compatibility
  • Surface engineering in Nanomedicine
  • Passivation

Published Papers (4 papers)

View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Open AccessArticle Large-Area Biomolecule Nanopatterns on Diblock Copolymer Surfaces for Cell Adhesion Studies
Nanomaterials 2019, 9(4), 579; https://doi.org/10.3390/nano9040579
Received: 1 March 2019 / Revised: 2 April 2019 / Accepted: 3 April 2019 / Published: 9 April 2019
PDF Full-text (2652 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at [...] Read more.
Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at the nanoscale. Herein we present a method to produce in an easy, straightforward process, nanopatterns of biomolecular ligands to study ligand–receptor processes involving multivalent interactions. We based our platform in self-assembled diblock copolymers composed of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) that form PMMA nanodomains in a closed-packed hexagonal arrangement. Upon PMMA selective functionalization, biomolecular nanopatterns over large areas are produced. Nanopattern size and spacing can be controlled by the composition of the block-copolymer selected. Nanopatterns of cell adhesive peptides of different size and spacing were produced, and their impact in integrin receptor clustering and the formation of cell focal adhesions was studied. Cells on ligand nanopatterns showed an increased number of focal contacts, which were, in turn, more matured than those found in cells cultured on randomly presenting ligands. These findings suggest that our methodology is a suitable, versatile tool to study and control receptor clustering signaling and downstream cell behavior through a surface-based ligand patterning technique. Full article
(This article belongs to the Special Issue Nanoscale Surface Engineering)
Figures

Figure 1

Open AccessArticle Carbon Fibers Encapsulated with Nano-Copper: A Core–Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications
Nanomaterials 2019, 9(3), 460; https://doi.org/10.3390/nano9030460
Received: 1 February 2019 / Revised: 7 March 2019 / Accepted: 12 March 2019 / Published: 19 March 2019
PDF Full-text (4068 KB) | HTML Full-text | XML Full-text
Abstract
A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core–shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activity against Escherichia coli and Staphylococcus [...] Read more.
A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core–shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus (antibacterial ratios of >92%) are achieved for the composite owing to the composition transformation from cellulose to carbon and nano-size effects as well as strong oxidizing ability of oxygen reactive radicals from interactions of nano-Cu with sulfhydryl groups of enzymes. Moreover, the core–shell material with high electrical conductivity induces the interfacial polarization loss and conduction loss, contributing to a high electromagnetic interference (EMI) shielding effectiveness of 29.3 dB. Consequently, this flexible and multi-purpose hybrid of nano-copper/CDCFs may be useful for numerous applications like self-cleaning wall cladding, EMI shielding layer and antibacterial products. Full article
(This article belongs to the Special Issue Nanoscale Surface Engineering)
Figures

Graphical abstract

Open AccessArticle Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane
Nanomaterials 2018, 8(11), 899; https://doi.org/10.3390/nano8110899
Received: 15 October 2018 / Revised: 28 October 2018 / Accepted: 30 October 2018 / Published: 2 November 2018
Cited by 2 | PDF Full-text (940 KB) | HTML Full-text | XML Full-text
Abstract
The wrapping of nanoparticles (NPs) by a membrane is a phenomenon of widespread and generic interest in biology, as well as in a variety of technological applications, such as drug delivery, clinical diagnostics, and biomedical imaging. However, the mechanisms of the interaction between [...] Read more.
The wrapping of nanoparticles (NPs) by a membrane is a phenomenon of widespread and generic interest in biology, as well as in a variety of technological applications, such as drug delivery, clinical diagnostics, and biomedical imaging. However, the mechanisms of the interaction between the membrane and NPs are not well understood yet. In this paper, we have presented an analytic thermodynamic model to investigate the wrapping process of NPs by a cell membrane. It is found that the bending energy of the deformed membrane increases nonlinearly with increasing wrapping degree, which leads to a free energy barrier for the wrapping. On the basis of analysis results, the wrapping of NPs can be divided into three types, i.e., impossible wrapping, barrier wrapping, and free wrapping. Furthermore, a phase diagram for the wrapping of NPs has been constructed, which clarifies the interrelated effects of the size and the ligand density of NPs. We hope that this work can provide some help in understanding the physical mechanism of the wrapping of NPs. Full article
(This article belongs to the Special Issue Nanoscale Surface Engineering)
Figures

Figure 1

Open AccessArticle Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films
Nanomaterials 2018, 8(11), 869; https://doi.org/10.3390/nano8110869
Received: 13 September 2018 / Revised: 5 October 2018 / Accepted: 18 October 2018 / Published: 23 October 2018
PDF Full-text (4115 KB) | HTML Full-text | XML Full-text
Abstract
We investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO3 single crystal substrates as a defect [...] Read more.
We investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO 3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO 3 single crystal substrates as a defect formation template for the subsequent growth of SrTiO 3 . We studied in detail the resulting microstructure and the local conducting and switching properties of the SrTiO 3 thin films. We revealed that the Au nanoparticles floated to the SrTiO 3 surface during growth, leaving behind a distorted thin film region in their vicinity. By employing conductive-tip atomic force microscopy, these distorted SrTiO 3 regions are identified as sites of preferential resistive switching. These findings can be attributed to the enhanced oxygen exchange reaction at the surface in these defective regions. Full article
(This article belongs to the Special Issue Nanoscale Surface Engineering)
Figures

Graphical abstract

Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top