Special Issue "Synthesis of Nanomaterials as Electrocatalysis, Photocatalysis and Thermal Catalysis"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 31 March 2021.

Special Issue Editor

Prof. Dr. Youngku Sohn

Guest Editor
Chungnam National University, Department of Chemistry, Daejeon, South Korea

Special Issue Information

Dear Colleagues,

For energy and environmental solutions, nanomaterials have played a significant role as catalysts which are broadly of electrocatalysis, photocatalysis and thermal catalysis depending on the driving force initiating a catalytic reaction. Hydrogen production, CO2 reduction, and pollutant treatments have been functioned by diverse nanomaterial catalysts. To boost the catalyst efficiency of a nanomaterial, various synthetic strategies have been developed using the elements in the Periodic Table and tuning many synthetic experimental parameters such as temperature, pH, and solvent. The parameters are interdependent like 3D cube puzzle. Nowadays, this becomes ‘material engineering technology’ and big challenging tasks in the catalyst development. This Special Issue will include future scopes of catalysis, all the nanomaterials, and catalyst reactor design applicable to energy and environment.

Prof. Dr. Youngku Sohn
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Electrocatalysis
  • Photocatalysis
  • Thermal Catalysis
  • Nanomaterials
  • Material engineering technology
  • Hydrogen production
  • CO2 reduction
  • Pollutant removal

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Facile Strategy for Mass Production of Pt Catalysts for Polymer Electrolyte Membrane Fuel Cells Using Low-Energy Electron Beam
Nanomaterials 2020, 10(11), 2216; https://doi.org/10.3390/nano10112216 - 06 Nov 2020
Abstract
There are so many variables affecting the large-scale chemical synthesis of nanoparticles that mass production remains a challenge. Here, using a high-efficiency compact electron beam generator irradiating a low-energy electron beam, we fabricate carbon-supported Pt nanoparticles (Pt/C) in an open chamber to present [...] Read more.
There are so many variables affecting the large-scale chemical synthesis of nanoparticles that mass production remains a challenge. Here, using a high-efficiency compact electron beam generator irradiating a low-energy electron beam, we fabricate carbon-supported Pt nanoparticles (Pt/C) in an open chamber to present the applicability of an electron beam to the mass production of metal nanocatalysts for polymer electrolyte membrane fuel cells (PEMFCs). The amount of dispersants (glycerol) and radical scavengers (isopropyl alcohol, IPA), the most important factors in the electron beam-induced fabrication process, is systematically controlled to find the conditions for the synthesis of the particle structure suitable for PEMFC applications. Furthermore, the effects of the structural changes on the electrochemical properties of the catalysts are thoroughly investigated. Through in-depth studies, it is clearly revealed that while dispersants control the nucleation step of monomers affecting the degree of dispersion of nanoparticles, radical scavengers with strong oxidizing power have an effect on the particle growth rate. Therefore, this study is expected to present the applicability of low-energy electron beam to the mass production of metal nanocatalysts for PEMFCs, and to provide insights into the fabrication of nanoparticles using low-energy electron beams. Full article
Show Figures

Graphical abstract

Open AccessArticle
Photocatalytic CO2 Reduction and Electrocatalytic H2 Evolution over Pt(0,II,IV)-Loaded Oxidized Ti Sheets
Nanomaterials 2020, 10(10), 1909; https://doi.org/10.3390/nano10101909 - 24 Sep 2020
Abstract
Energy recycling and production using abundant atmospheric CO2 and H2O have increasingly attracted attention for solving energy and environmental problems. Herein, Pt-loaded Ti sheets were prepared by sputter-deposition and Pt4+-reduction methods, and their catalytic activities on both photocatalytic [...] Read more.
Energy recycling and production using abundant atmospheric CO2 and H2O have increasingly attracted attention for solving energy and environmental problems. Herein, Pt-loaded Ti sheets were prepared by sputter-deposition and Pt4+-reduction methods, and their catalytic activities on both photocatalytic CO2 reduction and electrochemical hydrogen evolution were fully demonstrated. The surface chemical states were completely examined by X-ray photoelectron spectroscopy before and after CO2 reduction. Gas chromatography confirmed that CO, CH4, and CH3OH were commonly produced as CO2 reduction products with total yields up to 87.3, 26.9, and 88.0 μmol/mol, respectively for 700 °C-annealed Ti under UVC irradiation for 13 h. Pt-loading commonly negated the CO2 reduction yields, but CH4 selectivity was increased. Electrochemical hydrogen evolution reaction (HER) activity showed the highest activity for sputter-deposited Pt on 400 °C-annealed Ti with a HER current density of 10.5 mA/cm2 at −0.5 V (vs. Ag/AgCl). The activities of CO2 reduction and HER were found to be significantly dependent on both the nature of Ti support and the oxidation states (0,II,IV) of overlayer Pt. The present result could provide valuable information for designing efficient Pt/Ti-based CO2 recycle photocatalysts and electrochemical hydrogen production catalysts. Full article
Show Figures

Figure 1

Open AccessArticle
Enhanced Electrochemical Properties and OER Performances by Cu Substitution in NiCo2O4 Spinel Structure
Nanomaterials 2020, 10(9), 1727; https://doi.org/10.3390/nano10091727 - 31 Aug 2020
Abstract
In order to improve the electrochemical performance of the NiCo2O4 material, Ni ions were partially substituted with Cu2+ ions having excellent reducing ability. All of the electrodes were fabricated by growing the Ni1−xCuxCo2O [...] Read more.
In order to improve the electrochemical performance of the NiCo2O4 material, Ni ions were partially substituted with Cu2+ ions having excellent reducing ability. All of the electrodes were fabricated by growing the Ni1−xCuxCo2O4 electrode spinel-structural active materials onto the graphite felt (GF). Five types of electrodes, NiCo2O4/GF, Ni0.875Cu0.125Co2O4/GF, Ni0.75Cu0.25Co2O4/GF, Ni0.625Cu0.375Co2O4/GF, and Ni0.5Cu0.5Co2O4/GF, were prepared for application to the oxygen evolution reaction (OER). As Cu2+ ions were substituted, the electrochemical performances of the NiCo2O4-based structures were improved, and eventually the OER activities were also greatly increased. In particular, the Ni0.75Cu0.25Co2O4/GF electrode exhibited the best OER activity in a 1.0 M KOH alkaline electrolyte: the cell voltage required to reach a current density of 10 mA cm−2 was only 1.74 V (η = 509 mV), and a low Tafel slope of 119 mV dec−1 was obtained. X-ray photoelectron spectroscopy (XPS) analysis of Ni1−xCuxCo2O4/GF before and after OER revealed that oxygen vacancies are formed around active metals by the insertion of Cu ions, which act as OH-adsorption sites, resulting in high OER activity. Additionally, the stability of the Ni0.75Cu0.25Co2O4/GF electrode was demonstrated through 1000th repeated OER acceleration stability tests with a high faradaic efficiency of 94.3%. Full article
Show Figures

Graphical abstract

Back to TopTop