molecules-logo

Journal Browser

Journal Browser

Tannin Analysis, Chemistry, and Functions

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (15 December 2020) | Viewed by 95508

Special Issue Editors


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Universidad de Salamanca, Salamanca, Spain
Interests: determination of phenolic compounds in food and plant matrices; influence of phenolic compounds in wine sensory properties; valorization of phenolic-rich by-products
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Co-Guest Editor
Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, E37007 Salamanca, Spain
Interests: wine chemistry; food chemistry; phenolic compounds; sensory properties
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Tannins are phenolic compounds present in plants, fruits, and beverages that are commonly divided into three main groups depending on their structures: hydrolyzable tannins, condensed tannins (also referred to as proanthocyanidins) and phlorotannins. They are capable of binding and, in many cases, to precipitate proteins, which is the basis of their function in plants (i.e., defense against predators) and industrial uses (e.g., leather industry). This property is also responsible for the sensory role that tannins play in some food and beverages like cocoa, tea, and wine. Moreover, several biological and health-related properties have been reported for these compounds, suggesting protection against oxidative stress, antimicrobial properties, and prevention of some types of cancer. As a consequence, the industry has an increasing interest in tannin-rich extracts or products with biological and technological functions.

This Special Issue is focused on the most recent advances in tannin chemistry, analytical methodologies, new sources, valorization of industrial waste materials, standardization of extracts, and tannin-based bioactive products. Furthermore, articles addressing the technological, biological, and sensory properties of tannins are also in the scope of this Molecules Special Issue “Tannin Analysis, Chemistry, and Functions”.

Prof. Dr. Teresa Escribano-Bailon
Dr. Ignacio García Estévez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Structure, reactivity, and synthesis of tannins
  • New analytical methodologies for tannin analysis
  • Food and beverages organoleptic properties
  • Valorization and standardization of tannin extracts
  • Biological properties of tannins
  • Technological application of tannin-based extracts

Published Papers (22 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3623 KiB  
Article
Tannin-Mordant Coloration with Matcha (camelia sinensis) and Iron(II)-Lactate on Human Hair Tresses
by Lusine Sargsyan, Thomas Hippe, Hartmut Manneck and Volkmar Vill
Molecules 2021, 26(4), 829; https://doi.org/10.3390/molecules26040829 - 05 Feb 2021
Cited by 7 | Viewed by 4707
Abstract
The aim of this work was to optimize our natural hair dyeing system which we described in our previous work and to compare with other dyeing systems. Therefore, we investigated concentration limits of matcha and mordant and compared this new dyeing method with [...] Read more.
The aim of this work was to optimize our natural hair dyeing system which we described in our previous work and to compare with other dyeing systems. Therefore, we investigated concentration limits of matcha and mordant and compared this new dyeing method with commercial permanent systems on the market. Completely unpigmented hair tresses were dyed with matcha powder (camelia sinensis) and iron(II)-lactate. To investigate the wash fastness and concentration limits, the differently dyed hair tresses were spectrophotometrically measured. The comparison of the damage potential for which cysteic acid is an indicator was measured by NIR. The concentration of matcha and mordant are responsible for the intensity of the color results. The higher the matcha or the mordant concentration, the darker the color results of the dyed hair tresses. Hair damage of matcha mordant dyeing is comparable with results of commercial permanent hair coloration systems. Moreover, the results of wash fastness of matcha mordant dyed hair tresses is comparable and even better by tendency to permanent colored hair tresses. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

13 pages, 1692 KiB  
Article
Ellagitannin–Lipid Interaction by HR-MAS NMR Spectroscopy
by Valtteri Virtanen, Susanna Räikkönen, Elina Puljula and Maarit Karonen
Molecules 2021, 26(2), 373; https://doi.org/10.3390/molecules26020373 - 12 Jan 2021
Cited by 6 | Viewed by 2596
Abstract
Ellagitannins have antimicrobial activity, which might be related to their interactions with membrane lipids. We studied the interactions of 12 different ellagitannins and pentagalloylglucose with a lipid extract of Escherichia coli by high-resolution magic angle spinning NMR spectroscopy. The nuclear Overhauser effect was [...] Read more.
Ellagitannins have antimicrobial activity, which might be related to their interactions with membrane lipids. We studied the interactions of 12 different ellagitannins and pentagalloylglucose with a lipid extract of Escherichia coli by high-resolution magic angle spinning NMR spectroscopy. The nuclear Overhauser effect was utilized to measure the cross relaxation rates between ellagitannin and lipid protons. The shifting of lipid signals in 1H NMR spectra of ellagitannin–lipid mixture due to ring current effect was also observed. The ellagitannins that showed interaction with lipids had clear structural similarities. All ellagitannins that had interactions with lipids had glucopyranose cores. In addition to the central polyol, the most important structural feature affecting the interaction seemed to be the structural flexibility of the ellagitannin. Even dimeric and trimeric ellagitannins could penetrate to the lipid bilayers if their structures were flexible with free galloyl and hexahydroxydiphenoyl groups. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

17 pages, 1737 KiB  
Article
Effect of Hydrolyzable Tannins on Glucose-Transporter Expression and Their Bioavailability in Pig Small-Intestinal 3D Cell Model
by Maksimiljan Brus, Robert Frangež, Mario Gorenjak, Petra Kotnik, Željko Knez and Dejan Škorjanc
Molecules 2021, 26(2), 345; https://doi.org/10.3390/molecules26020345 - 11 Jan 2021
Cited by 5 | Viewed by 2163
Abstract
Intestinal transepithelial transport of glucose is mediated by glucose transporters, and affects postprandial blood-glucose levels. This study investigates the effect of wood extracts rich in hydrolyzable tannins (HTs) that originated from sweet chestnut (Castanea sativa Mill.) and oak (Quercus petraea) [...] Read more.
Intestinal transepithelial transport of glucose is mediated by glucose transporters, and affects postprandial blood-glucose levels. This study investigates the effect of wood extracts rich in hydrolyzable tannins (HTs) that originated from sweet chestnut (Castanea sativa Mill.) and oak (Quercus petraea) on the expression of glucose transporter genes and the uptake of glucose and HT constituents in a 3D porcine-small-intestine epithelial-cell model. The viability of epithelial cells CLAB and PSI exposed to different HTs was determined using alamarBlue®. qPCR was used to analyze the gene expression of SGLT1, GLUT2, GLUT4, and POLR2A. Glucose uptake was confirmed by assay, and LC–MS/ MS was used for the analysis of HT bioavailability. HTs at 37 µg/mL were found to adversely affect cell viability and downregulate POLR2A expression. HT from wood extract Tanex at concentrations of 4 µg/mL upregulated the expression of GLUT2, as well as glucose uptake at 1 µg/mL. The time-dependent passage of gallic acid through enterocytes was influenced by all wood extracts compared to gallic acid itself as a control. These results suggest that HTs could modulate glucose uptake and gallic acid passage in the 3D cell model. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

11 pages, 2902 KiB  
Article
Ellagitannins and Oligomeric Proanthocyanidins of Three Polygonaceous Plants
by Yun-Qiu Li, Masako Kitaoka, Juri Takayoshi, Ya-Feng Wang, Yosuke Matsuo, Yoshinori Saito, Yong-Lin Huang, Dian-Peng Li, Gen-ichiro Nonaka, Zhi-Hong Jiang and Takashi Tanaka
Molecules 2021, 26(2), 337; https://doi.org/10.3390/molecules26020337 - 11 Jan 2021
Cited by 4 | Viewed by 2721
Abstract
The aim of this study was to characterize hydrolyzable tannins in Polygonaceous plants, as only a few plants have previously been reported to contain ellagitannins. From Persicaria chinensis, a new hydrolyzable tannin called persicarianin was isolated and characterized to be 3-O [...] Read more.
The aim of this study was to characterize hydrolyzable tannins in Polygonaceous plants, as only a few plants have previously been reported to contain ellagitannins. From Persicaria chinensis, a new hydrolyzable tannin called persicarianin was isolated and characterized to be 3-O-galloyl-4,6-(S)-dehydrohexahydroxydiphenoyl-d-glucose. Interestingly, acid hydrolysis of this compound afforded ellagic acid, despite the absence of a hexahydroxydiphenoyl group. From the rhizome of Polygonum runcinatum var. sinense, a large amount of granatin A, along with minor ellagitannins, helioscpoinin A, davicratinic acids B and C, and a new ellagitannin called polygonanin A, were isolated. Based on 2D nuclear magnetic resonance (NMR) spectroscopic examination, the structure of polygonanin A was determined to be 1,6-(S)-hexahydroxydiphenoyl-2,4-hydroxychebuloyl-β-d-glucopyranose. These are the second and third hydrolyzable tannins isolated from Polygonaceous plants. In addition, oligomeric proanthocyanidins of Persicaria capitatum and P. chinensis were characterized by thiol degradation. These results suggested that some Polygonaceous plants are the source of hydrolyzable tannins not only proanthocyanidins. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

14 pages, 1371 KiB  
Article
Changes in Feed Proanthocyanidin Profiles during Silage Production and Digestion by Lamb
by Marion Girard, Annika Lehtimäki, Giuseppe Bee, Frigga Dohme-Meier, Maarit Karonen and Juha-Pekka Salminen
Molecules 2020, 25(24), 5887; https://doi.org/10.3390/molecules25245887 - 12 Dec 2020
Cited by 2 | Viewed by 2057
Abstract
Proanthocyanidins are plant specialized metabolites which are beneficial to animal nutrition and health. This study determined how proanthocyanidin profiles of sainfoin (Onobrychis viciifolia) and birdsfoot trefoil (Lotus corniculatus) change during the forage conservation process and along the digestive tract [...] Read more.
Proanthocyanidins are plant specialized metabolites which are beneficial to animal nutrition and health. This study determined how proanthocyanidin profiles of sainfoin (Onobrychis viciifolia) and birdsfoot trefoil (Lotus corniculatus) change during the forage conservation process and along the digestive tract of lamb. We determined soluble, protein- and fiber-bound proanthocyanidins by spectrophotometric methods and soluble proanthocyanidin profiles by UPLC-MS/MS. During the conservation process, the total proanthocyanidin contents reduced in both forages and the relative proportion of insoluble proanthocyanidins increased, especially in sainfoin. The soluble proanthocyanidins, their mean degree of polymerization and the relative prodelphinidin share declined in both feed species. In the abomasum of lambs fed sainfoin silage, most of the proanthocyanidins were in insoluble form bound to proteins and fibers, but in the small and large intestines, the proportion of soluble proanthocyanidins increased again. For lambs fed birdsfoot trefoil, the trend was not so clear as proanthocyanidins were already mainly soluble in the abomasum. Nevertheless, a large part of soluble proanthocyanidins was recovered in the digestive tract but could not be detected by the UPLC-MS/MS method used. This study suggests that proanthocyanidins have probably been metabolized in the digestive tract by the resident microbiota. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

9 pages, 2125 KiB  
Article
Water Extraction of Tannins from Aleppo Pine Bark and Sumac Root for the Production of Green Wood Adhesives
by Issam Dababi, Olinda Gimello, Elimame Elaloui and Nicolas Brosse
Molecules 2020, 25(21), 5041; https://doi.org/10.3390/molecules25215041 - 30 Oct 2020
Cited by 7 | Viewed by 2089
Abstract
The extraction of condensed tannins from Aleppo pine bark and sumac roots (Brown Rhus tripartitum) was examined in near industrial conditions, using a water medium in the presence of 2% NaHCO3 and 0.5% NaHSO3 at two different temperatures (70 [...] Read more.
The extraction of condensed tannins from Aleppo pine bark and sumac roots (Brown Rhus tripartitum) was examined in near industrial conditions, using a water medium in the presence of 2% NaHCO3 and 0.5% NaHSO3 at two different temperatures (70 °C and at 100 °C). The tannins extracts were recovered in high yields (~25% of Aleppo pine and ~30% for sumac) with high phenolic contents (>75%). The tannins were characterized by 13C-NMR and MALDI TOF and showed characteristics of procyanidin/prodelphinidin units. The tannins extracted at 100 °C were composed of smaller flavonoid oligomers (DP < 8) compared to those extracted at a lower temperature (DP > 10). Adhesive resin formulations were prepared using Aleppo or sumac tannins and four different cross linkers (hexamine, glutaraldehyde, furfural, and glyoxal). The resins were studied by TMA in bending and tannins-based formaldehyde-free wood particleboards were produced. The panels displayed internal bond strengths > 0.35 MPa with the four hardeners and all of them passed relevant international standard specifications for interior grade panels. The best results were observed with the tannins extracted at 70 °C with furfural as hardener (IB = 0.81 MPa for Aleppo pine and IB = 0.76 MPa for sumac). Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

17 pages, 2666 KiB  
Article
Distribution of Protein Precipitation Capacity within Variable Proanthocyanidin Fingerprints
by Milla Marleena Leppä, Juuso Erik Laitila and Juha-Pekka Salminen
Molecules 2020, 25(21), 5002; https://doi.org/10.3390/molecules25215002 - 28 Oct 2020
Cited by 10 | Viewed by 1971
Abstract
Proanthocyanidins (PAs) are highly bioactive plant specialized metabolites. One of their most characteristic features is their ability to precipitate proteins. In this study, eleven plant species were used to study the structure–activity patterns between PAs and their protein precipitation capacity (PPC) with bovine [...] Read more.
Proanthocyanidins (PAs) are highly bioactive plant specialized metabolites. One of their most characteristic features is their ability to precipitate proteins. In this study, eleven plant species were used to study the structure–activity patterns between PAs and their protein precipitation capacity (PPC) with bovine serum albumin. To obtain a comprehensive selection of PAs with highly variable procyanidin to prodelphinidin ratios and mean degree of polymerizations, nearly 350 subfractions were produced from the eleven plant species by semi-preparative liquid chromatography. Their PA composition was defined by tandem mass spectrometry and high-resolution mass spectrometry, and their PPC was measured with a turbidimetry-based well-plate reader assay. The distribution of the PPC within plant species varied significantly. The mean degree of polymerization of the PAs had a strong correlation with the PPC (r = 0.79). The other structural features were significant from the PPC point of view as well, but they contributed to the PPC in different ways in different plant species. Retention time, prodelphinidin proportion, and mean degree of polymerization explained 64% of the measured variance of the PPC. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

10 pages, 2476 KiB  
Article
Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3
by Anwar E.M. Noreljaleel, Anke Wilhelm and Susan L. Bonnet
Molecules 2020, 25(21), 4980; https://doi.org/10.3390/molecules25214980 - 28 Oct 2020
Cited by 4 | Viewed by 2337
Abstract
Proanthocyanidins (PACs) are natural plant-derived polymers consisting of flavan-3-ol monomers. Quebracho (Schinopsis lorentzii and balansae) heartwood and mimosa (Acacia mearnsii) bark extracts are the major industrial sources of PACs. These commercial extracts are often sulfited to reduce their viscosity [...] Read more.
Proanthocyanidins (PACs) are natural plant-derived polymers consisting of flavan-3-ol monomers. Quebracho (Schinopsis lorentzii and balansae) heartwood and mimosa (Acacia mearnsii) bark extracts are the major industrial sources of PACs. These commercial extracts are often sulfited to reduce their viscosity and increase their solubility in water. The chemical process of sulfitation is still poorly understood regarding stereochemical influences during the reaction and during the cleavage of the interflavanyl bond of oligomers. To gain a better understanding of sulfitation, two diastereomeric flavan-3-ol monomers were sulfited under industrial conditions, and procyanidin B-3 (catechin-4α→8-catechin) were sulfited to investigate interflavanyl bond cleavage with sulfitation at C-4. Treatment of diastereomeric flavan-3-ols 2R,3S-catechin and 2R,3R-epicatechin with NaHSO3 at 100 °C in aqueous medium afforded the enantiomeric (1R,2S)- and (1S,2R)-1-(3,4-dihydroxyphenyl)-2-hydroxy-3-(2,4,6-trihydroxyphenyl)propane-1-sulfonic acid, respectively. Utilizing computational NMR PD4 calculations it was determined that the direction of stereoselective nucleophilic attack is controlled by the C-3 configuration of the flavan-3-ols catechin and epicatechin. Sulfitation of the catechin-4α→8-catechin dimer 7 (procyanidin B-3) under the same conditions led to the cleavage of the interflavanyl bond yielding the C-4 sulfonic acid substituted catechin momomer. From the heterocyclic ring coupling constants it was determined that nucleophilic attack occurs from the β-face of the dimer leading to the 2,3-trans-3,4-cis isomer as product. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

19 pages, 1266 KiB  
Article
Effect of Different Enological Tannins on Oxygen Consumption, Phenolic Compounds, Color and Astringency Evolution of Aglianico Wine
by Luigi Picariello, Alessandra Rinaldi, Martino Forino, Francesco Errichiello, Luigi Moio and Angelita Gambuti
Molecules 2020, 25(20), 4607; https://doi.org/10.3390/molecules25204607 - 10 Oct 2020
Cited by 10 | Viewed by 2868
Abstract
Background: In the wine industry, in addition to condensed tannins of grape origin, other commercial tannins are commonly used. However, the influence of oxygen uptake related to different tannin additions during the post fermentative phase in wine has not been completely investigated. In [...] Read more.
Background: In the wine industry, in addition to condensed tannins of grape origin, other commercial tannins are commonly used. However, the influence of oxygen uptake related to different tannin additions during the post fermentative phase in wine has not been completely investigated. In this study, we evaluated the influence of four different commercial tannins (namely, condensed tannins, gallotannins, ellagitannins and tea tannins) during four saturation cycles. Method: Wine samples were added with four different tannin classes (30 g/hL) as to have 5 different experimental samples: control, gallotannins (GT), condensed tannins (CT), ellagitannins (ET), and tea tannins (TT). The chemical composition of the four commercially available tannin mixtures was defined by means of NMR and high-resolution mass spectrometry. After the addition of tannins, each wine sample was oxidized by air over four cycles of saturation. During the experiment oxygen consumption rate (OCR), sulfur dioxide consumption, acetaldehyde production, phenolic compounds, chromatic characteristics, astringency measured by the reactivity towards saliva proteins and astringency subqualities were evaluated. Results: The experiment lasted 52 days. The addition of tannins influenced the oxygen consumption on the 1st day of the saturation cycles and, in the case of TT, a higher total consumption of oxygen was also detected. Acetaldehyde increased during the experiment while the native anthocyanins decreased throughout the oxidation process. Conclusion: Wines added with tannins featured improved color intensities with respect to the control; the addition of TT, GT and ET slightly promoted the formation of short polymeric pigments; the astringency, determined before and at the end of the experiment, decreased in all the samples, including the control wine, and mostly in the ET and GT samples. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

26 pages, 5650 KiB  
Article
Localization of (+)-Catechin in Picea abies Phloem: Responses to Wounding and Fungal Inoculation
by Tuula Jyske, Katsushi Kuroda, Susanna Keriö, Andrey Pranovich, Riikka Linnakoski, Noriko Hayashi, Dan Aoki and Kazuhiko Fukushima
Molecules 2020, 25(12), 2952; https://doi.org/10.3390/molecules25122952 - 26 Jun 2020
Cited by 11 | Viewed by 3007
Abstract
To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were [...] Read more.
To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (−)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen–host interactions of trees. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

14 pages, 1647 KiB  
Article
The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli
by Sara Štumpf, Gregor Hostnik, Mateja Primožič, Maja Leitgeb, Juha-Pekka Salminen and Urban Bren
Molecules 2020, 25(12), 2947; https://doi.org/10.3390/molecules25122947 - 26 Jun 2020
Cited by 34 | Viewed by 6206
Abstract
In this study the effect of growth medium strength on the minimum inhibitory concentration (MIC) of different tannins and tannin extracts against Escherichia coli was systematically investigated for the first time. Three pure compounds (vescalagin, castalagin and gallic acid) and five extracts (chestnut, [...] Read more.
In this study the effect of growth medium strength on the minimum inhibitory concentration (MIC) of different tannins and tannin extracts against Escherichia coli was systematically investigated for the first time. Three pure compounds (vescalagin, castalagin and gallic acid) and five extracts (chestnut, quebracho, mimosa, Colistizer and tannic acid) were studied. Broth microdilution was assayed and bacteria were grown using different growth medium strengths varying from half to double the concentration recommended by the producer. MICs were determined using the iodonitrotetrazolium chloride (INT) dye or turbidity measurements. It was observed that MIC values depend on the growth medium strength. With an increase in the growth medium concentration MIC values rose roughly linearly for all samples, while their relative order remained unchanged, indicating that a direct interaction of tannins with growth medium nutrients represents the likely source of their antimicrobial activity. Understanding the effect of growth medium strength can finally yield a plausible explanation for the observed variation in MIC values reported in the scientific literature as well as provide help in planning proper applications of tannins in the livestock production. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

15 pages, 1758 KiB  
Article
Tannin-Rich Plants as Natural Manipulators of Rumen Fermentation in the Livestock Industry
by G. M. Fagundes, G. Benetel, K. C. Santos, K. C. Welter, F. A. Melo, J. P. Muir and I. C. S. Bueno
Molecules 2020, 25(12), 2943; https://doi.org/10.3390/molecules25122943 - 26 Jun 2020
Cited by 14 | Viewed by 2752
Abstract
Condensed tannins (CTs) are plant anti-herbivore compounds with antimicrobial activity that can be used in ruminant diets as ruminal microbiome manipulators. However, not all CTs from fodder legumes are bioactive due to their wide structural diversity. The aim of our study was to [...] Read more.
Condensed tannins (CTs) are plant anti-herbivore compounds with antimicrobial activity that can be used in ruminant diets as ruminal microbiome manipulators. However, not all CTs from fodder legumes are bioactive due to their wide structural diversity. The aim of our study was to investigate the effect of 10 CT-containing plants (Flemingia macrophylla, Leucaena leucocephala, Stylosanthes guianensis, Gliricidia sepium, Cratylia argentea, Cajanus cajan, Desmodium ovalifolium, Macrotiloma axilare, D. paniculatum, and Lespedeza procumbens) on in vitro fermentation kinetics of Nelore beef cattle. Polyethylene glycol (PEG), a specific CT-binding agent, was added to neutralize condensed tannin. Tifton and alfalfa hay were used as controls lacking CT. The experimental layout included a randomized complete block with factorial design and four blocks. The data were subjected to analysis of variance followed by Duncan’s test to determine differences (p < 0.05) among treatment means. The addition of PEG in browse incubations resulted in increased gas production, fermentation rate, short-chain fatty acid (SCFA) and N-NH3 release. Within our study, Lespedeza procumbens, Desmodium paniculatum, Leucaena leucocephala, Desmodium ovalifolium, and Flemingia macrophylla showed superior bioactivity compared to other species evaluated, suggesting a natural alternative for replacing ionophores to modify ruminal fermentation. Condensed tannins from L. pocumbens, D. paniculatum, L. leucocephala, D. ovalifolium, and F. macrophylla have the potential to modify rumen fermentation in beef cattle. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

12 pages, 1956 KiB  
Article
Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging
by Hirofumi Enomoto and Takashi Nirasawa
Molecules 2020, 25(10), 2373; https://doi.org/10.3390/molecules25102373 - 20 May 2020
Cited by 16 | Viewed by 2835
Abstract
Flavan-3-ols, procyanidins and their monomers are major flavonoids present in peanuts that show a wide range of biological properties and health benefits, based on their potent antioxidant activity. Procyanidin oligomers, especially A-type, are reportedly abundant in peanut skin; however, their localization in the [...] Read more.
Flavan-3-ols, procyanidins and their monomers are major flavonoids present in peanuts that show a wide range of biological properties and health benefits, based on their potent antioxidant activity. Procyanidin oligomers, especially A-type, are reportedly abundant in peanut skin; however, their localization in the raw peanut testa remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate the localization of flavan-3-ols in peanut testa. 1,5-Diaminonaphthalene was coated onto the peanut section by matrix vapor deposition/recrystallization, and MALDI-MSI measurements were performed in the negative-ion mode. Peaks matching the m/z values of flavan-3-ol [M − H] ions were observed in the mass spectrum extracted from the outer epidermis of the peanut testa, using the region of interest function. Catechin and/or epicatechin, five A-type, and one B-type procyanidins were assigned by the fragment ions generated by retro-Diels-Alder, heterocyclic ring fission, and quinone methide reactions detected in MALDI-tandem MS spectra. These flavan-3-ols were localized in the outer epidermis of the peanut testa. This information will contribute to improving the extraction and purification efficiencies of flavan-3-ols from peanut testa. As flavan-3-ols display anti-microbial activity, it is speculated that flavan-3-ols present in the outer epidermis of peanut testa act to prevent pathogen infection. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

8 pages, 206 KiB  
Article
Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra
by Chris Beaver, Thomas S Collins and James Harbertson
Molecules 2020, 25(7), 1576; https://doi.org/10.3390/molecules25071576 - 30 Mar 2020
Cited by 5 | Viewed by 3351
Abstract
The primary objective of this work was to optimize red wine phenolic prediction with models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed to achieve this, namely algorithm selection, spectral multicollinearity, and phenolic evolution over time. For algorithm selection, support [...] Read more.
The primary objective of this work was to optimize red wine phenolic prediction with models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed to achieve this, namely algorithm selection, spectral multicollinearity, and phenolic evolution over time. For algorithm selection, support vector regression, kernel ridge regression, and kernel partial least squares regression were compared. For multicollinearity, the spectrum of malvidin chloride was used as an external standard for spectral adjustment. For phenolic evolution, spectral data were collected during fermentation as well as once a week for four weeks after fermentation had ended. Support vector regression gave the most accurate predictions among the three algorithms tested. Additionally, malvidin chloride proved a useful standard for phenolic spectral transformation and isolation. As for phenolic evolution, models needed to be calibrated and validated throughout the aging process to ensure predictive accuracy. In short, red wine phenolic prediction by the models built in this work can be realistically achieved, although periodic model re-calibration and expansion from data obtained using known phenolic assays is recommended to maintain model accuracy. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
14 pages, 2571 KiB  
Article
Production of Ellagitannin Hexahydroxydiphenoyl Ester by Spontaneous Reduction of Dehydrohexa-hydroxydiphenoyl Ester
by Manami Era, Yosuke Matsuo, Yoshinori Saito and Takashi Tanaka
Molecules 2020, 25(5), 1051; https://doi.org/10.3390/molecules25051051 - 26 Feb 2020
Cited by 9 | Viewed by 3084
Abstract
Amariin is an ellagitannin with two dehydrohexahydroxydiphenoyl (DHHDP) moieties connecting glucose 2,4- and 3,6-hydroxy groups. This tannin is predominant in the young leaves of Triadica sebifera and Carpinus japonica. However, as the leaves grow, the 3,6-DHHDP is converted to its reduced form, [...] Read more.
Amariin is an ellagitannin with two dehydrohexahydroxydiphenoyl (DHHDP) moieties connecting glucose 2,4- and 3,6-hydroxy groups. This tannin is predominant in the young leaves of Triadica sebifera and Carpinus japonica. However, as the leaves grow, the 3,6-DHHDP is converted to its reduced form, the hexahydroxydiphenoyl (HHDP) group, to generate geraniin, a predominant ellagitannin of the matured leaves. The purified amariin is unstable in aqueous solution, and the 3,6-(R)-DHHDP is spontaneously degraded to give HHDP, whereas 2,4-(R)-DHHDP is stable. The driving force of the selective reduction of the 3,6-DHHDP of amariin is shown to be the conformational change of glucose from O,3B to 1C4. Heating geraniin with pyridine affords 2,4-(R)-DHHDP reduction products. Furthermore, the acid hydrolysis of geraniin yields two equivalents of ellagic acid. Although the reaction mechanism is still ambiguous, these results propose an alternative biosynthetic route of the ellagitannin HHDP groups. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

14 pages, 3223 KiB  
Article
Distribution of Flavan-3-ol Species in Ripe Strawberry Fruit Revealed by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging
by Hirofumi Enomoto, Senji Takahashi, Shiro Takeda and Hajime Hatta
Molecules 2020, 25(1), 103; https://doi.org/10.3390/molecules25010103 - 26 Dec 2019
Cited by 39 | Viewed by 6226
Abstract
Flavan-3-ols, which comprise proanthocyanidins and their monomers, are major flavonoids in strawberries, and they have a wide range of biological activities and health benefits. However, their spatial distribution in strawberry fruit remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), [...] Read more.
Flavan-3-ols, which comprise proanthocyanidins and their monomers, are major flavonoids in strawberries, and they have a wide range of biological activities and health benefits. However, their spatial distribution in strawberry fruit remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), to visualize flavan-3-ols in ripe strawberry fruit. Peaks matching the m/z values of flavan-3-ols [M − H] ions were detected in the negative ion mode using 1,5-diaminonaphthalene as matrix. Catechin and/or epicatechin, three B-type procyanidins, and two B-type propelargonidins were identified by MALDI-tandem MS. These flavan-3-ols were mainly distributed in the calyx, in and around the vascular bundles, and in the skin. In-source fragmentation of proanthocyanidins was determined using their standards, suggesting their distribution was mixed ion images of themselves, and fragment ions generated from those had a higher degree of polymerization. B-type procyanidins were predominantly distributed in the vascular bundles than in the skin, whereas B-type propelargonidins were almost equally distributed between the vascular bundles and skin, suggesting that their distribution patterns are different from the type of their flavan-3-ol monomers. Flavan-3-ols, especially B-type procyanidins, may help prevent pathogen infection not only in the skin but also in and around the vascular bundles. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

14 pages, 1470 KiB  
Article
Reductive Metabolism of Ellagitannins in the Young Leaves of Castanopsis sieboldii
by Hatsumi Wakamatsu, Sumire Tanaka, Yosuke Matsuo, Yoshinori Saito, Koyo Nishida and Takashi Tanaka
Molecules 2019, 24(23), 4279; https://doi.org/10.3390/molecules24234279 - 24 Nov 2019
Cited by 7 | Viewed by 2820
Abstract
The leaves of Castanopsis sieboldii (Fagaceae) contain characteristic hexahydroxydiphenoyl (HHDP) esters of 28-O-glucosyl 2α,3β,23,24-tetrahydroxyolean- and urs-12-en-28-oic acids. In this study, uncharacterized substances were detected in the young leaves, which are not observed in the mature leaves. Preliminary HPLC analyses indicated that [...] Read more.
The leaves of Castanopsis sieboldii (Fagaceae) contain characteristic hexahydroxydiphenoyl (HHDP) esters of 28-O-glucosyl 2α,3β,23,24-tetrahydroxyolean- and urs-12-en-28-oic acids. In this study, uncharacterized substances were detected in the young leaves, which are not observed in the mature leaves. Preliminary HPLC analyses indicated that the substances had dehydro-HHDP (DHHDP) ester groups; however, the esters were unstable and decomposed during extraction. Therefore, the compounds were isolated as their stable phenazine derivatives by extracting the young leaves with acidic aqueous EtOH containing o-phenylenediamine. The structures of the phenazine derivatives indicated that the unstable metabolites of the young leaves were 3,24-DHHDP esters of the abovementioned triterpenes. Extraction of the young leaves with 80% acetonitrile containing reducing agents, ascorbic acid or dithiothreitol afforded the corresponding HHDP esters. Furthermore, heating of the young leaves in 80% acetonitrile also yielded the same HHDP esters as the reduction products. The results suggested that the HHDP esters are reductively produced from DHHDP esters in the young leaves. In addition, the structures of five previously reported triterpene HHDP esters were revised. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

16 pages, 2812 KiB  
Article
Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain
by José Pérez-Navarro, Guillaume Cazals, Christine Enjalbal, Pedro Miguel Izquierdo-Cañas, Sergio Gómez-Alonso and Cédric Saucier
Molecules 2019, 24(21), 4001; https://doi.org/10.3390/molecules24214001 - 05 Nov 2019
Cited by 11 | Viewed by 2904
Abstract
Glycosylated flavanols (monoglycosides and diglycosides) in skin and seed extracts of Vitis vinifera grapes grown in Castilla-La Mancha (Spain) were investigated using ultra-high-performance liquid chromatography—tandem mass spectrometry (UHPLC-ESI-QQQ-MS/MS). Six grape varieties (Airén, Tempranillo, the recently identified Albillo Dorado, Montonera del Casar, Moribel, and [...] Read more.
Glycosylated flavanols (monoglycosides and diglycosides) in skin and seed extracts of Vitis vinifera grapes grown in Castilla-La Mancha (Spain) were investigated using ultra-high-performance liquid chromatography—tandem mass spectrometry (UHPLC-ESI-QQQ-MS/MS). Six grape varieties (Airén, Tempranillo, the recently identified Albillo Dorado, Montonera del Casar, Moribel, and Tinto Fragoso) were studied over two consecutive years (2016 and 2017). A total of twenty monomeric flavanol monoglycosides, four diglycosylated monomers, and three dimeric flavanol monoglycosides were detected in all grape samples. The diversity observed in the composition of glycosylated flavanol in the grape berries suggests a strong influence of variety and grape tissue (skin or seed). Monomeric flavanol glycosides were more abundant in grape seed extracts, in contrast with monoglycosylated dimeric forms. In addition, the glycosylated flavanol content was related to berry color in grape skins, with higher concentrations measured in black grape varieties. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 506 KiB  
Review
The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients
by Zahra Mohammed Hassan, Tlou Grace Manyelo, Letlhogonolo Selaledi and Monnye Mabelebele
Molecules 2020, 25(20), 4680; https://doi.org/10.3390/molecules25204680 - 14 Oct 2020
Cited by 33 | Viewed by 5381
Abstract
Over recent years, the monogastric animal industry has witnessed an increase in feed prices due to several factors, and this trend is likely to continue. The hike in feed prices is mostly due to extreme competition over commonly used conventional ingredients. For this [...] Read more.
Over recent years, the monogastric animal industry has witnessed an increase in feed prices due to several factors, and this trend is likely to continue. The hike in feed prices is mostly due to extreme competition over commonly used conventional ingredients. For this trend to be subdued, alternative ingredients of both plant and animal origin need to be sourced. These types of ingredients are investigated with the aim of substituting all or some of the conventional compounds. However, alternative ingredients often have a double-edged sword effect, in that they can supply animals with the necessary nutrients although they contain antinutritional factors such as tannins. Tannins are complex secondary metabolites commonly present in the plant kingdom, known to bind with protein and make it unavailable; however, recently they have been proven to have the potential to replace conventional ingredients, in addition to their health benefits, particularly the control of zoonotic pathogens such as Salmonella. Thus, the purpose of this review is to (1) classify the types of tannins present in alternative feed ingredients, and (2) outline the effects and benefits of tannins in monogastric animals. Several processing methods have been reported to reduce tannins in diets for monogastric animals; furthermore, these need to be cost-effective. It can thus be concluded that the level of inclusion of tannins in diets will depend on the type of ingredient and the animal species. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

26 pages, 4343 KiB  
Review
Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste
by Susana Soares, Elsa Brandão, Carlos Guerreiro, Sónia Soares, Nuno Mateus and Victor de Freitas
Molecules 2020, 25(11), 2590; https://doi.org/10.3390/molecules25112590 - 02 Jun 2020
Cited by 114 | Viewed by 10068
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins’ taste properties have been a line of worldwide research. In recent years, significant advances [...] Read more.
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins’ taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins’ astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

24 pages, 653 KiB  
Review
Chemistry and Reactivity of Tannins in Vitis spp.: A Review
by Aude A. Watrelot and Erin L. Norton
Molecules 2020, 25(9), 2110; https://doi.org/10.3390/molecules25092110 - 30 Apr 2020
Cited by 49 | Viewed by 7487
Abstract
Tannins are a group of polyphenols found in fruits, leaves, trees, etc., well known in the leather industry and in apples, persimmons and grapes, because of their capacity to interact with other polyphenols or other components either from the food product or from [...] Read more.
Tannins are a group of polyphenols found in fruits, leaves, trees, etc., well known in the leather industry and in apples, persimmons and grapes, because of their capacity to interact with other polyphenols or other components either from the food product or from saliva. Prior to being able to interact with other compounds, tannins have to be extracted from the food matrix, which depends on their chemistry, as well as the chemical structure of other components, such as cell wall material and proteins. Vitis vinifera grapes are commonly grown around the world and are used in winemaking, providing good quality wines with different levels of tannins responsible for the final wine’s astringency. Many studies have focused on tannins extractability and retention with cell wall material, and the reactivity of tannins with proteins in Vitis vinifera grapes and wine, but there are very few reports for other Vitis species. However, depending on the environmental characteristics of certain regions, Vitis hybrid grapes are grown and used to produce wines more and more. This review focuses on the comparison of the chemistry of tannins, and their reactivity with other macromolecules in Vitis species. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

27 pages, 1972 KiB  
Review
Technological Application of Tannin-Based Extracts
by Maria Fraga-Corral, Paula García-Oliveira, Antia G. Pereira, Catarina Lourenço-Lopes, Cecilia Jimenez-Lopez, Miguel Angel Prieto and Jesus Simal-Gandara
Molecules 2020, 25(3), 614; https://doi.org/10.3390/molecules25030614 - 30 Jan 2020
Cited by 121 | Viewed by 14254
Abstract
Tannins are polyphenolic compounds naturally found in vegetables. Their presence in nature has prompted their historical use in many different ways. The revision of their traditional utilization has allowed their further modification aiming for an industrial application. Sometimes these modifications have implied the [...] Read more.
Tannins are polyphenolic compounds naturally found in vegetables. Their presence in nature has prompted their historical use in many different ways. The revision of their traditional utilization has allowed their further modification aiming for an industrial application. Sometimes these modifications have implied the addition of harmful substances such as formaldehyde, classified as a carcinogen of category B1. In other cases, these natural tannins have been replaced by synthetic compounds that threaten human and animal health and damage the environment. Therefore, currently, both academy and industry are searching for the substitution of these unsafe complexes by the increasing inclusion of tannins, natural molecules that can be obtained from several and diverse renewable resources, modified using harmless additives. To achieve promising results, cost-efficient and eco-friendly extraction methods have been designed. Once these green alternatives have been isolated, they have been successfully applied to many fields with very assorted aims of utilization such as coagulants, adhesives, floatation agents, tannings, dyes, additives, or biomolecules. Therefore, this review offers a global vision of the full process that involves the tannin’s technological application including an overview of the most relevant tannin sources, effective extraction methods, and their utilization in very diverse fields. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Figure 1

Back to TopTop