molecules-logo

Journal Browser

Journal Browser

Special Issue "New Prospects in Flame-Retardant Materials"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 15 September 2021.

Special Issue Editor

Dr. Anthony Chun Yin Yuen
E-Mail Website
Guest Editor
School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney 2052, Australia
Interests: composite and hybrid materials; computational fluid dynamics; heat and mass transfer; fire safety science; molecular dynamics; material characterisation

Special Issue Information

Dear Colleagues,

Lightweight, high-performance composite materials, such as fibre-reinforced polymers, are rapidly replacing conventional building materials. Nevertheless, these polymeric materials are often associated with life-threatening fire hazards due to the production of toxic substances in the event of fires. Fire incidents caused by these highly flammable polymers have increased dramatically over the last decade. Therefore, it is common nowadays to add nanofillers to the polymer matrix as flame retardants to effectively reduce the flammability, asphyxiated gases and generation of smoke. Recent studies on bio-inspired flame retardants have achieved remarkable flame-retardant performance with eco-friendly features.

Nonetheless, most of the research on flame-retardant chemicals remains qualitative, built upon decades of experimental knowledge. Model development to strengthen our understanding of flame retardancy remains in its early stages, especially for emerging nanocomposite materials. One of the potential approaches to studying flame-retardant mechanisms and pyrolysis chemistry is molecular dynamics simulation. This Special Issue aims to identify the most recent scientific advancements in flame-retardant materials and the characterisation of specific molecular mechanisms underlying flame retardancy. Topics of interest include: (i) bio-inspired flame retardants; (ii) multifunctional polymer composites; (iii) pyrolytic mechanisms; (iv) combustion behaviour; (v) prediction of the toxicity of gases; and (vi) molecular dynamics.

Dr. Anthony Chun Yin Yuen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flame retardants;
  • combustion;
  • chemical kinetics;
  • molecular dynamics;
  • material characterisation;
  • nanomaterials;
  • pyrolysis

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites
Molecules 2021, 26(4), 850; https://doi.org/10.3390/molecules26040850 - 06 Feb 2021
Viewed by 465
Abstract
This paper experimentally investigates the influence of carbon nanotubes (CNTs) on phase composition, microstructure deterioration, thermal behavior, and residual mechanical strengths of cementitious composites exposed to elevated temperatures. Cement mortars with small dosages of CNTs, 0.05% and 0.2% by weight of cement, were [...] Read more.
This paper experimentally investigates the influence of carbon nanotubes (CNTs) on phase composition, microstructure deterioration, thermal behavior, and residual mechanical strengths of cementitious composites exposed to elevated temperatures. Cement mortars with small dosages of CNTs, 0.05% and 0.2% by weight of cement, were prepared and then heated at 25 °C, 150 °C, 200 °C, 450 °C, and 600 °C for two hours before being tested. The results show positive impact of the CNTs on the hydration process of cement mortar at room temperature and at higher temperatures up to 200 °C. Decomposition of the hydration products is obvious at 450 °C, whereas sever deterioration in the microstructure occurs at 600 °C. The nano reinforcement and bridging effect of the CNTs are obvious up to 450 °C. Thermal behavior characterization shows that CNTs incorporation enhances the thermal conductivity of the unheated and heat-treated mortar specimens. The decomposition of the hydration products needs more heat in the presence of CNTs. Finally, presence of CNTs significantly enhances the residual compressive and flexural strengths of heated mortar specimens for all studied temperatures. Full article
(This article belongs to the Special Issue New Prospects in Flame-Retardant Materials)
Show Figures

Figure 1

Article
Enhanced Fire Safety of Rigid Polyurethane Foam via Synergistic Effect of Phosphorus/Nitrogen Compounds and Expandable Graphite
Molecules 2020, 25(20), 4741; https://doi.org/10.3390/molecules25204741 - 15 Oct 2020
Cited by 4 | Viewed by 547
Abstract
In order to explore highly efficient flame-retardant rigid polyurethane foam (RPUF), phosphorus/nitrogen compounds and expandable graphite (EG) were successfully incorporated into RPUF by a free one-spot method. The combustion results showed that the fire safety of the RPUF samples was remarkably improved by [...] Read more.
In order to explore highly efficient flame-retardant rigid polyurethane foam (RPUF), phosphorus/nitrogen compounds and expandable graphite (EG) were successfully incorporated into RPUF by a free one-spot method. The combustion results showed that the fire safety of the RPUF samples was remarkably improved by the addition of phosphoric/nitrogen compounds and EG. With the incorporation of 22.4 wt.% phosphorus/nitrogen compounds and 3.2 wt.% EG, the RPUF composites achieved UL-94 V-0 rating. Besides, the total heat release and total smoke release of RPUF composites were reduced by 29.6% and 32.4% respectively, compared to those of the pure RPUF sample. PO• and PO2• together with nonflammable gaseous products were evolved from phosphoric/nitrogen compounds in the gas phase, which quenched the flammable free radicals in the matrix and diluted the concentration of combustible gaseous products generated from PRUF during combustion. The compact char residues which acted as excellent physical barriers were formed by catalysis of EG and phosphoric/nitrogen compounds in the condense phase. The fire hazard of RPUF was significantly reduced by the synergistic effect of phosphorus-nitrogen compounds and EG. This work provides a promising strategy to enhance the fire safety of RPUF. Full article
(This article belongs to the Special Issue New Prospects in Flame-Retardant Materials)
Show Figures

Figure 1

Review

Jump to: Research

Review
Review on the Use of Artificial Intelligence to Predict Fire Performance of Construction Materials and Their Flame Retardancy
Molecules 2021, 26(4), 1022; https://doi.org/10.3390/molecules26041022 - 15 Feb 2021
Viewed by 895
Abstract
The evaluation and interpretation of the behavior of construction materials under fire conditions have been complicated. Over the last few years, artificial intelligence (AI) has emerged as a reliable method to tackle this engineering problem. This review summarizes existing studies that applied AI [...] Read more.
The evaluation and interpretation of the behavior of construction materials under fire conditions have been complicated. Over the last few years, artificial intelligence (AI) has emerged as a reliable method to tackle this engineering problem. This review summarizes existing studies that applied AI to predict the fire performance of different construction materials (e.g., concrete, steel, timber, and composites). The prediction of the flame retardancy of some structural components such as beams, columns, slabs, and connections by utilizing AI-based models is also discussed. The end of this review offers insights on the advantages, existing challenges, and recommendations for the development of AI techniques used to evaluate the fire performance of construction materials and their flame retardancy. This review offers a comprehensive overview to researchers in the fields of fire engineering and material science, and it encourages them to explore and consider the use of AI in future research projects. Full article
(This article belongs to the Special Issue New Prospects in Flame-Retardant Materials)
Show Figures

Figure 1

Review
A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches
Molecules 2021, 26(2), 478; https://doi.org/10.3390/molecules26020478 - 18 Jan 2021
Cited by 2 | Viewed by 1188
Abstract
In recent years, the applications of lithium-ion batteries have emerged promptly owing to its widespread use in portable electronics and electric vehicles. Nevertheless, the safety of the battery systems has always been a global concern for the end-users. The separator is an indispensable [...] Read more.
In recent years, the applications of lithium-ion batteries have emerged promptly owing to its widespread use in portable electronics and electric vehicles. Nevertheless, the safety of the battery systems has always been a global concern for the end-users. The separator is an indispensable part of lithium-ion batteries since it functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of separators have direct influences on the performance of lithium-ion batteries, therefore the separators play an important role in the battery safety issue. With the rapid developments of applied materials, there have been extensive efforts to utilize these new materials as battery separators with enhanced electrical, fire, and explosion prevention performances. In this review, we aim to deliver an overview of recent advancements in numerical models on battery separators. Moreover, we summarize the physical properties of separators and benchmark selective key performance indicators. A broad picture of recent simulation studies on separators is given and a brief outlook for the future directions is also proposed. Full article
(This article belongs to the Special Issue New Prospects in Flame-Retardant Materials)
Show Figures

Figure 1

Back to TopTop