Microorganisms from Terrestrial Extreme Environments: Exploration and Exploitation Towards Sustainable Plant Production

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 3860

Special Issue Editors


E-Mail Website
Guest Editor
Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Interests: biotechnology of mycorrhizal Fungi; soil microbiology and ecology; soil chemistry; environmental sciences; bioremediation of contaminated soils; plant physiology and nutrition; food production and technology; plant tolerance to abiotic stresses

E-Mail Website
Guest Editor
Department of Chemical Science and Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811-230, Chile
Interests: biofungicides and "One Health" agricultural systems; study of fungal resistance to fungicides; chemotaxonomy of filamentous fungi, mycotoxins and climate change; new techniques for long-term fungal preservation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Department of Chemical Science and Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811-230, Chile
Interests: soil microbiology; mycorrhizae and phytoremediation of environments contaminated with metal(loid)s

Special Issue Information

Dear Colleagues,

Global climate change (GCC) is generating several issues at present, especially limitations regarding water and food security, with an enormous impact on a growing population. In this scenario, it is urgent to develop sustainable alternatives. Allowing the adaptation of agro-food production systems to the new conditions of drastic temperatures, drought, salinity, and, in many cases, soil contamination due to industrial activities or the excessive use of agrochemicals is required. On the other hand, the main role played by diverse soil microorganisms is well recognized, especially those associated with the plant rhizosphere, which are able to promote plant growth through different mechanisms. Jointly, these represent an increase in the plant’s tolerance to adverse environmental conditions. Noticeably, the existence of plant communities in extreme environments, such as hyper-arid deserts, Arctic and Antarctic areas, salt flats, high mountains, or soils with a high presence of phytotoxic elements, among others, represents a unique opportunity for the study of microorganisms highly adapted to these limiting conditions. Studying such kinds of microorganisms opens avenues to their potential for plant growth promotion, highlighting them as a valuable tool to be used in plant production. This Special Issue aims to gather current and relevant information on the microbiological components present in diverse extreme terrestrial environments, specifically oriented towards the characterization and corroboration of microbial capacity to increase the plant tolerance to the main limitations that the GCC is generating in plant production.

Dr. Pablo Cornejo
Prof. Dr. Cledir Santos
Guest Editors

Dr. Catalina Vidal
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • global climate change
  • hyper-arid environments
  • salinity
  • drought
  • polluted soils
  • plant-growth-promoting microorganisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1803 KiB  
Article
Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation
by Shumei Cai, Sixin Xu, Deshan Zhang, Yun Liang and Haitao Zhu
Microorganisms 2025, 13(6), 1184; https://doi.org/10.3390/microorganisms13061184 - 22 May 2025
Viewed by 336
Abstract
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed [...] Read more.
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed beds, and rice fields). The results showed that, after 50 years of reclamation, total dissolved salts decreased significantly in vegetated zones, particularly in rice fields, where Cl dropped by 54.71% and nutrients (SOC, TN, TP) increased substantially. Key ions, including HCO3, Cl, and K+, were the primary drivers of microbial community structure, exerting more influence than total salinity (TDS) or pH. Bacterial abundance and diversity increased over time, with rice fields showing the highest values after 50 years. Actinobacteriota and Proteobacteria were positively correlated with HCO3 and K+, while Cl negatively affected Acidobacteriota. Genus-level analyses revealed that specific taxa, such as Sphingomonas and Gaiella, exhibited ion responses diverging from broader phylum-level patterns, exemplifying niche-specific adaptations to salinity regimes. These findings underscore the pivotal role of vegetation type and individual salinity ions in driving microbial succession during tidal flat reclamation. A phased vegetation strategy, starting with reed colonization and followed by rice cultivation, can enhance soil quality and microbial diversity. This research provides important insights for optimizing vegetation management and ion monitoring in sustainable tidal flat reclamation. Full article
Show Figures

Figure 1

16 pages, 2414 KiB  
Article
Effect of Funneliformis mosseae and Cu Additives on the Astragalus sinicus Root Growth and Cd Uptake Under the Modeled Conditions
by Yuxin Li, Rui Cai, Jindian Hu, Hongling Liu and Xiancan Zhu
Microorganisms 2025, 13(5), 1109; https://doi.org/10.3390/microorganisms13051109 - 12 May 2025
Viewed by 293
Abstract
Cadmium (Cd) contamination in soil poses a serious threat to plant growth and productivity, while arbuscular mycorrhizal (AM) fungi play a vital role in enhancing plant growth, improving tolerance to heavy metals, and restoring polluted ecosystems. To enhance the tolerance of Astragalus sinicus [...] Read more.
Cadmium (Cd) contamination in soil poses a serious threat to plant growth and productivity, while arbuscular mycorrhizal (AM) fungi play a vital role in enhancing plant growth, improving tolerance to heavy metals, and restoring polluted ecosystems. To enhance the tolerance of Astragalus sinicus to Cd stress, a pot experiment was conducted to investigate the effects of inoculation and copper (Cu) addition on growth, Cd accumulation, and translocation under Cd-stressed soil conditions. The results showed that Cd inhibited the root growth of A. sinicus, and AM fungi inoculation and Cu + AM significantly increased root biomass and root volume (p < 0.05). Under Cd stress, AM fungi inoculation reduced Cd concentration by 72.40% in the shoots, while it increased by 92.69% in the roots. Both AM fungi inoculation and Cu + AM enhanced Cd uptake in the roots, while inhibiting Cd translocation to the shoots. After the application of Cu and inoculation with AM fungi, the roots have a strong absorption and enrichment ability for Cd; the bioconcentration factor of Cd in the roots of A. sinicus reached 1018.59% and 366.08%, respectively. Cu + AM increased the enrichment of Cd in the roots and restricted its translocation to the shoots. Moreover, the combination of AM fungi inoculation and Cu addition significantly increased soluble sugar (by 77.29%) and proline contents (by 445.62%) and reduced CAT activity (by 74.67%) under Cd stress. In summary, both Cu addition and AM fungi inoculation promoted the growth of A. sinicus under Cd stress, improved its physiological metabolism, and reduced Cd content in the soil, with the combined Cu and AM fungi treatment showing the most significant effect. Full article
Show Figures

Figure 1

23 pages, 4631 KiB  
Article
Priority Colonization of Endophytic Fungal Strains Drives Litter Decomposition and Saprotroph Assembly via Functional Trait Selection in Karst Oak Forests
by Dongmei Yang, Zaihua He, Yonghui Lin, Xingbing He and Xiangshi Kong
Microorganisms 2025, 13(5), 1066; https://doi.org/10.3390/microorganisms13051066 - 3 May 2025
Viewed by 362
Abstract
Litter decomposition dynamics are largely governed by microbial interactions. While the involvement of endophytic fungi in early-stage decomposition and microbial succession is well established, their species-specific contributions to decomposer community assembly remain insufficiently understood. This study investigated the effects of single-strain endophytic colonization [...] Read more.
Litter decomposition dynamics are largely governed by microbial interactions. While the involvement of endophytic fungi in early-stage decomposition and microbial succession is well established, their species-specific contributions to decomposer community assembly remain insufficiently understood. This study investigated the effects of single-strain endophytic colonization using dominant species (Tubakia dryina, Tubakia dryinoides, Guignardia sp.) and rare species (Neofusicoccum parvum, Penicillium citrinum) on Quercus acutissima leaf decomposition through a controlled field experiment in a karst ecosystem. Endophytes accelerated decomposition rates across treatments but paradoxically reduced transient CO2 emissions, linked to intensified microbial carbon and phosphorus limitations in late stages. Contrary to expectations, decomposition efficiency was governed by endophytic fungal species traits rather than colonization abundance, with rare species outperforming dominant taxa. Endophytes induced significant fungal community restructuring, reducing Ascomycota while enriching lignin-degrading Basidiomycota, but minimally affected bacterial composition. Co-occurrence networks revealed endophyte-driven fragmentation of microbial connectivity, with only two keystone fungal hubs (Trechispora sp. and Russula carmesina) identified compared to natural communities. Endophytic colonization improved fungal community assembly, mediated by an increase in lignin-degrading Basidiomycota and the suppression of pathogenic Leotiomycetes lineages. Our findings demonstrate that endophytes hierarchically regulate decomposer communities through phylogenetically conserved fungal interactions, prioritizing functional trait selection over competitive dominance, thereby stabilizing decomposition under nutrient constraints. This mechanistic framework advances predictions of litter decay dynamics in forest ecosystems undergoing microbial community perturbations. Full article
Show Figures

Figure 1

16 pages, 3647 KiB  
Article
Biochemical, Catabolic, and PGP Activity of Microbial Communities and Bacterial Strains from the Root Zone of Baccharis linearis in a Mediterranean Mine Tailing
by Humberto Aponte, Yoelvis Sulbaran-Bracho, Pedro Mondaca, Catalina Vidal, Rodrigo Pérez, Sebastián Meier, Pablo Cornejo and Claudia Rojas
Microorganisms 2023, 11(11), 2639; https://doi.org/10.3390/microorganisms11112639 - 26 Oct 2023
Cited by 4 | Viewed by 2181
Abstract
The management of mine tailings (MT) is commonly workload heavy, intrusive, and expensive. Phytostabilization offers a promising approach for MT management; however, it poses challenges due to the unfavorable physicochemical properties of these wastes. Nevertheless, native microorganisms capable of supporting plant growth and [...] Read more.
The management of mine tailings (MT) is commonly workload heavy, intrusive, and expensive. Phytostabilization offers a promising approach for MT management; however, it poses challenges due to the unfavorable physicochemical properties of these wastes. Nevertheless, native microorganisms capable of supporting plant growth and development could enhance the efficacy of phytostabilization. This study assesses the biological activity of microbial communities from the root zone of Baccharis linearis, which is naturally present in MT, in order to evaluate their biotechnological potential for phytostabilization. The root zone and bulk samples were collected from B. linearis plants located within a MT in the Mediterranean zone of Chile. Enzyme activities related to the cycling of C, N, and P were assessed. The community-level physiological profile was evaluated using the MicroRespTM system. Bacterial plant growth-promoting (PGP) traits and colony forming units (CFU) were evaluated through qualitative and microbiological methods, respectively. CFU, enzyme activities, and CLPP were higher in the root zone compared with the bulk samples. Five bacterial strains from the root zone exhibited PGP traits such as P solubilization and N acquisition, among others. The presence of microbial communities in the root zone of B. linearis with PGP traits suggests their potential to enhance the ecological management of MT through phytostabilization programs. Full article
Show Figures

Graphical abstract

Back to TopTop