Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling Plot
2.3. Determination of Soil Physiochemical Properties
2.4. Soil DNA Extraction and Bacterial Community Analysis
2.5. qPCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Changes in Soil Physicochemical Properties During Reclamation
3.2. Influence of Ionic Composition on Total Dissolved Salt and pH
3.3. Changes in Soil Bacterial Community Structure During Reclamation
3.4. Changes in Soil Bacterial Diversity and Abundance During Reclamation
4. Discussion
4.1. Tidal Flat Reclamation Shapes Soil Bacterial Community Assembly Across Vegetation Types and Time Scales
4.2. Salinity Ions as Primary Drivers of Microbial Community Restructuring
4.3. Ecosystem-Level Implications and Study Limitations
5. Conclusions
6. Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.Q.; Liu, Y.M.; Yan, J.L.; Hina, K.; Hussain, Q.; Qiu, T.J.; Zhu, J.Y. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecol. Eng. 2022, 179, 106594. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Ji, L.H.; Wang, Z.H.; Li, K.; Xu, X.Y.; Guo, D.F. Functional diversity and CO2 emission characteristics of soil bacteria during the succession of halophyte vegetation in the Yellow River Delta. Int. J. Environ. Res. Public Health 2022, 19, 12919. [Google Scholar] [CrossRef] [PubMed]
- Cabral, R.L.; Ferreira, T.O.; Nóbrega, G.N.; Barcellos, D.; Roiloa, S.R.; Zandavalli, R.B.; Otero, X.L. How do plants and climatic conditions control soil properties in hypersaline tidal flats? Appl. Sci. 2020, 10, 7624. [Google Scholar] [CrossRef]
- Ding, B.; Bai, Y.; Guo, S.; He, Z.; Wang, B.; Liu, H.; Zhai, J.; Cao, H. Effect of irrigation water salinity on soil characteristics and microbial communities in cotton fields in Southern Xinjiang, China. Agronomy 2023, 13, 1679. [Google Scholar] [CrossRef]
- Long, Z.J.; Zhu, H.; He, J.B.; Wu, Y.H.; Ma, Z.J.; Yu, D.M.; Bing, H.J. Variation patterns and their driving factors in soil extracellular enzyme activities and stoichiometry along a 49-years vegetation restoration chronosequence. Plant Soil 2024, 500, 665–680. [Google Scholar] [CrossRef]
- Lv, X.; Ma, B.; Yu, J.; Chang, S.X.; Xu, J.; Li, Y.; Wang, G.; Han, G.; Bo, G.; Chu, X. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Sci. Rep. 2016, 6, 36550. [Google Scholar] [CrossRef]
- Chen, M.; Hussain, S.; Liu, Y.; Mustafa, G.; Hu, B.; Qin, Z.; Wang, X. Responses of soil seed bank and its above-ground vegetation to various reclamation patterns. Mar. Environ. Res. 2024, 196, 106436. [Google Scholar] [CrossRef]
- Cheng, Q.L.; Chang, H.P.; Yang, X.; Wang, D.; Wang, W.L. Salinity and nutrient modulate soil bacterial communities in the coastal wetland of the Yellow River Delta, China. Environ. Sci. Pollut. Res. 2021, 28, 14621–14631. [Google Scholar] [CrossRef]
- Wei, H.J.; He, W.Y.; Li, Z.J.; Ge, L.F.; Zhang, J.M.; Liu, T.Z. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhances bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Front. Plant Sci. 2022, 13, 959427. [Google Scholar] [CrossRef]
- Liang, S.; Li, H.; Wu, H.T.; Yan, B.X.; Song, A.W. Microorganisms in coastal wetland sediments: A review on microbial community structure, functional gene, and environmental potential. Front. Microbiol. 2023, 14, 1163896. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.D.; Hua, J.F.; Xue, J.H. Salinity drives shifts in soil microbial community composition and network complexity along vegetation community succession in coastal tidal flats. Estuar. Coast. Shelf Sci. 2022, 276, 108005. [Google Scholar] [CrossRef]
- Wang, T.Y.; Flint, S.; Palmer, J. Magnesium and calcium ions: Roles in bacterial cell attachment and biofilm structure maturation. Biofouling 2019, 35, 959–974. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Sun, N.X.; Du, H.M.; Hui, N.; Altaf, M.; Du, B.M.; Yin, S.; Liu, C.J. Bacterial communities are more sensitive to water addition than fungal communities due to higher soil K and Na in a degraded karst ecosystem of Southwestern China. Front. Microbiol. 2020, 11, 562546. [Google Scholar] [CrossRef]
- Robertson, L.S.; Galbraith, H.S.; Iwanowicz, D.; Blakeslee, C.J.; Cornman, R.S. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure. Environ. Toxicol. Chem. 2017, 36, 2352–2366. [Google Scholar] [CrossRef]
- Carillo, P.; Woodrow, P.; Raimondi, G.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Colla, G.; Mori, M.; Giordano, M.; De Pascale, S.; et al. Omeprazole promotes chloride exclusion and induces salt tolerance in greenhouse basil. Agronomy 2019, 9, 355. [Google Scholar] [CrossRef]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rousk, J. Comparative toxicities of salts on microbial processes in soil. Appl. Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef]
- Zolkos, S.; Tank, S.E.; Kokelj, S.V.; Striegl, R.G.; Shakil, S.; Voigt, C.; Sonnentag, O.; Quinton, W.L.; Schuur, E.A.G.; Zona, D.; et al. Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change. Glob. Biogeochem. Cycles 2022, 36, e2022GB007403. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemistry Analysis Protocols; China Agriculture Science Press: Beijing, China, 1999. [Google Scholar]
- An, J.X.; Liu, C.; Wang, Q.; Yao, M.J.; Rui, J.P.; Zhang, S.H.; Li, X.Z. Soil bacterial community structure in Chinese wetlands. Geoderma 2019, 337, 290–299. [Google Scholar] [CrossRef]
- Ge, Y.; He, J.Z.; Zhu, Y.G.; Zhang, J.B.; Xu, Z.H.; Zhang, L.M.; Zheng, Y.M. Differences in soil bacterial diversity: Driven by contemporary disturbances or historical contingencies? ISME J. 2008, 2, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.H.; Rong, H.A.; Yang, Z.L.; Pan, X.Y.; Chen, Y.; Yang, M. Microbial diversity and functional profiling in coastal tidal flat sediment with pollution of nutrients and potentially toxic elements. J. Soils Sediments 2023, 23, 2935–2950. [Google Scholar] [CrossRef]
- Shih, P.M.; Ward, L.M.; Fischer, W.W. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc. Natl. Acad. Sci. USA 2017, 114, 10749–10754. [Google Scholar] [CrossRef]
- Arsyadi, A.; Guo, Y.; Ebihara, A.; Sakagami, N.; Sakoda, M.; Tago, K.; Kamijo, T.; Ohta, H.; Nishizawa, T. A nitrate-transforming bacterial community dominates in the Miscanthus rhizosphere on nitrogen-deficient volcanic deposits of Miyake-jima. Microorganisms 2023, 11, 260. [Google Scholar] [CrossRef]
- Yang, Z.K.; Sui, H.L.; Zhang, T.J.; Wang, Y.X.; Song, Y.Q. Response of surface soil microbial communities to heavy metals and soil properties for five different land-use types of Yellow River Delta. Environ. Earth Sci. 2023, 82, 599. [Google Scholar] [CrossRef]
- Nelson, M.B.; Martiny, A.C.; Martiny, J.B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. USA 2016, 113, 8033–8040. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hwang, J.; Kang, I.; Cho, J.C. A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments. Sci. Rep. 2021, 11, 19978. [Google Scholar] [CrossRef]
- Savvichev, A.S.; Rusanov, I.I.; Kadnikov, V.V.; Beletsky, A.V.; Zakharova, E.E.; Samylina, O.S.; Sigalevich, P.A.; Semiletov, I.P.; Ravin, N.V.; Pimenov, N.V. Biogeochemical activity of methane-related microbial communities in bottom sediments of cold seeps of the Laptev Sea. Microorganisms 2023, 11, 250. [Google Scholar] [CrossRef]
- Xiang, J.L.; Jin, J.; Liu, Q.; Huang, Y.L.; Wu, W.S.; Tang, R.X.; Chen, Y.; Yin, K.D. Alkalinity gradients in grasslands alter soil bacterial community composition and function. Soil Sci. Soc. Am. J. 2021, 85, 286–298. [Google Scholar] [CrossRef]
- Gao, Y.M.; Han, Y.Q.; Li, X.; Li, M.Y.; Wang, C.X.; Li, Z.W.; Wang, Y.J.; Wang, W.D. A salt-tolerant Streptomyces paradoxus D2-8 from rhizosphere soil of Phragmites communis augments soybean tolerance to soda saline-alkali stress. Pol. J. Microbiol. 2022, 71, 43–54. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, F.; Zhu, X.; Lamlom, S.F.; Zhao, K.; Zhang, B.; Wang, J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: A study on soybean growth and development. Front. Microbiol. 2023, 14, 1233351. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.Z.; Salam, N.; Han, M.X.; Jiao, J.Y.; Cheng, J.; Wei, D.Q.; Xiao, M.; Li, W.J. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from karstic caves. Front. Microbiol. 2017, 8, 1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.C.; Wang, Z.W.; Zhu, K.F.; Wu, W.M. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front. Microbiol. 2023, 14, 1102547. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Z.M.; Ding, H.; Wen, S.Q.; Zhang, G.C.; Qin, F.F.; Dai, L.X. Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut. Arch. Microbiol. 2021, 204, 15. [Google Scholar] [CrossRef]
- Li, J.B.; Hu, A.Y.; Wang, X.P.; Zhao, C.; Jin, J.R.; Liu, G.M.; Han, Y.J.; Liu, B. Soil microbial communities show different patterns under different land use types in the coastal area of Nantong, China. Agronomy 2023, 13, 2613. [Google Scholar] [CrossRef]
- Flieder, M.; Buongiorno, J.; Herbold, C.W.; Hausmann, B.; Rattei, T.; Lloyd, K.G.; Loy, A.; Wasmund, K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J. 2021, 15, 3159–3180. [Google Scholar] [CrossRef]
- Mao, X.; Yang, Y.; Guan, P.; Geng, L.; Ma, L.; Di, H.; Liu, W.; Li, B. Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicol. Environ. Saf. 2022, 239, 113616. [Google Scholar] [CrossRef]
- Naidoo, Y.; Valverde, A.; Pierneef, R.E.; Cowan, D.A. Differences in precipitation regime shape microbial community composition and functional potential in Namib Desert soils. Microb. Ecol. 2022, 83, 689–701. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.Q.; Dou, Y.X.; Cheng, H.; Liu, L.X.; An, S.S. Linkage between soil ectoenzyme stoichiometry ratios and microbial diversity following the conversion of cropland into grassland. Agric. Ecosyst. Environ. 2021, 314, 107418. [Google Scholar] [CrossRef]
- Qiu, L.J.; Li, Y.J.; Zhong, Q.; Ma, W.; Kuang, Y.X.; Zhou, S.X.; Chen, G.; Xie, J.L.; Hu, H.L.; Chen, Y.Q.; et al. Adaptation mechanisms of the soil microbial community under stoichiometric imbalances and nutrient-limiting conditions in a subtropical nitrogen-saturated forest. Plant Soil 2023, 489, 239–258. [Google Scholar] [CrossRef]
Samples | SOC (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | TDS (g kg−1) | pH |
---|---|---|---|---|---|---|
GT_yr1 | 2.98 ± 0.07 | 0.32 ± 0.01 | 0.51 ± 0.02 | 12.67 ± 0.15 | 3.08 ± 0.18 | 7.85 ± 0.18 |
GT_yr3 | 3.87 ± 0.24 | 0.44 ± 0.02 | 0.72 ± 0.02 | 14.83 ± 0.21 | 3.14 ± 0.10 | 7.74 ± 0.14 |
GT_yr5 | 3.27 ± 0.22 | 0.33 ± 0.01 | 0.57 ± 0.02 | 13.67 ± 0.15 | 2.38 ± 0.14 | 8.17 ± 0.10 |
GT_yr10 | 2.65 ± 0.09 | 0.29 ± 0.02 | 0.53 ± 0.03 | 14.43 ± 0.60 | 2.55 ± 0.18 | 8.38 ± 0.11 |
GT_yr50 | 11.66 ± 0.27 | 1.15 ± 0.04 | 0.77 ± 0.02 | 13.10 ± 0.62 | 2.65 ± 0.13 | 8.15 ± 0.15 |
LW_yr1 | 4.04 ± 0.09 | 0.41 ± 0.01 | 0.56 ± 0.02 | 14.27 ± 0.25 | 2.04 ± 0.07 | 7.54 ± 0.11 |
LW_yr3 | 11.87 ± 0.09 | 1.15 ± 0.03 | 0.63 ± 0.02 | 15.23 ± 0.25 | 1.52 ± 0.08 | 7.96 ± 0.22 |
LW_yr5 | 13.05 ± 0.52 | 1.26 ± 0.02 | 0.74 ± 0.02 | 14.97 ± 0.47 | 1.64 ± 0.05 | 7.71 ± 0.19 |
LW_yr10 | 13.44 ± 0.09 | 1.35 ± 0.02 | 0.91 ± 0.01 | 15.83 ± 0.12 | 2.06 ± 0.07 | 7.55 ± 0.14 |
LW_yr50 | 13.55 ± 0.09 | 1.33 ± 0.03 | 0.80 ± 0.02 | 15.03 ± 0.59 | 1.62 ± 0.09 | 7.59 ± 0.12 |
SD_yr10 | 3.34 ± 0.09 | 1.57 ± 0.04 | 0.65 ± 0.02 | 16.00 ± 0.26 | 1.22 ± 0.05 | 7.98 ± 0.13 |
SD_yr50 | 20.38 ± 0.27 | 1.97 ± 0.02 | 1.04 ± 0.02 | 12.80 ± 0.56 | 0.96 ± 0.09 | 8.00 ± 0.23 |
Sources of Variance | Significance p-Value | |||||
SOC | TN | TP | TK | TDS | pH | |
Vegetation | 0.0008 | 0.0011 | 0.0603 | 0.0073 | 0.0000 | 0.0003 |
Year | 0.0087 | 0.0153 | 0.0026 | 0.0015 | 0.0178 | 0.5594 |
Vegetation × Year | 0.2677 | 0.1480 | 0.0972 | 0.4846 | 0.4213 | 0.0177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Xu, S.; Zhang, D.; Liang, Y.; Zhu, H. Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation. Microorganisms 2025, 13, 1184. https://doi.org/10.3390/microorganisms13061184
Cai S, Xu S, Zhang D, Liang Y, Zhu H. Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation. Microorganisms. 2025; 13(6):1184. https://doi.org/10.3390/microorganisms13061184
Chicago/Turabian StyleCai, Shumei, Sixin Xu, Deshan Zhang, Yun Liang, and Haitao Zhu. 2025. "Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation" Microorganisms 13, no. 6: 1184. https://doi.org/10.3390/microorganisms13061184
APA StyleCai, S., Xu, S., Zhang, D., Liang, Y., & Zhu, H. (2025). Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation. Microorganisms, 13(6), 1184. https://doi.org/10.3390/microorganisms13061184