Research Progress of Silicon-Based Photodetectors

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 29

Special Issue Editor


E-Mail Website
Guest Editor
The School of Microelectronics, Shanghai University, Shanghai, China
Interests: silicon photonics; photodetectors; micro- and nanofabrication processes

Special Issue Information

Dear Colleagues,

Silicon-based photodetectors, leveraging silicon’s CMOS compatibility, cost efficiency, and scalability, are integral to modern optoelectronic systems, and this Special Issue seeks to compile cutting-edge advancements in materials, architectures, and integration strategies that address silicon’s inherent limitations, such as bandgap constraints and noise susceptibility. By bridging material science, device physics, and systems engineering, this collection will underscore silicon’s enduring potential to drive next-generation photodetection technologies, offering a roadmap for high-performance, multifunctional, and cost-effective solutions across industrial and scientific domains. This Special Issue seeks to showcase research papers, short communications and review articles that focus on: (1) innovations in nanostructured silicon and hybrid heterojunctions that could enhance the performance of photodetectors, e.g., their spectral sensitivity, responsivity, dark current, and 3dB bandwidth; (2) novel device designs, including waveguide-integrated photodetectors with high 3dB bandwidths and quantum efficiencies; (3) the integration of plasmonic metasurfaces and dielectric resonators with photodetectors; (4) the investigations of photodetectors in extreme environments, such as low temperatures and strong radiation; and (5) novel micro- and nanofabrication and packaging technologies for Si-based photodetectors.

Prof. Dr. Yuan Dong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photodetectors
  • silicon
  • extreme environments
  • fabrication processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 2636 KiB  
Article
Low Temperature Characteristics of Ge-on-Si Waveguide Photodetectors: A Combined Simulation and Experimental Study
by Jingchuan Liu, Zhenyu Li, Xiaofei Liu, Wentao Yan, Xingyan Zhao, Shaonan Zheng, Yang Qiu, Qize Zhong, Yuan Dong and Ting Hu
Micromachines 2025, 16(5), 542; https://doi.org/10.3390/mi16050542 (registering DOI) - 30 Apr 2025
Abstract
Benefiting from the progress of the germanium (Ge) epitaxy process on silicon (Si) substrates, waveguide-integrated Ge-on-Si photodetectors (PDs) have demonstrated decent performances in short-wave infrared (SWIR) detection. By lowering the operating temperature, theses PDs can meet the stringent signal-to-noise requirements for high-sensitivity detection. [...] Read more.
Benefiting from the progress of the germanium (Ge) epitaxy process on silicon (Si) substrates, waveguide-integrated Ge-on-Si photodetectors (PDs) have demonstrated decent performances in short-wave infrared (SWIR) detection. By lowering the operating temperature, theses PDs can meet the stringent signal-to-noise requirements for high-sensitivity detection. We systematically investigated the dark current characteristics and optical response in the 1500–1600 nm wavelength range of the waveguide-integrated Ge-on-Si PDs operated at low temperatures (200 K to 300 K). Under a −3 V bias, the PD exhibits a room-temperature dark current of 4.62 nA and a responsivity of 0.87 A/W at 1550 nm. When the temperature was reduced to 200 K, the dark current decreased to 93.69 pA, and the responsivity dropped to 0.34 A/W. Using finite-difference time-domain (FDTD) and technology computer-aided design (TCAD) simulations, we extracted the absorption coefficients of epitaxial Ge on Si at low temperatures. At room temperature, the absorption coefficient at the wavelength of 1550 nm was approximately 1100 cm−1, while at 200 K, the absorption coefficient decreased to 248 cm−1. The outcomes of this work pave the way for the high-performance low-temperature Si photonic systems in the future. Full article
(This article belongs to the Special Issue Research Progress of Silicon-Based Photodetectors)
Show Figures

Figure 1

Back to TopTop