Piezoelectric MEMS/NEMS—Materials, Devices, and Applications, Third Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "E:Engineering and Technology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 6382

Special Issue Editor

Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
Interests: MEMS; microrobotics; smart materials; energy harvesting
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Piezoelectric materials have been playing a crucial role in a large number of devices and applications that have promoted a variety of today’s technological progress and impacted modern society. They are widely used as sensors and actuators, and they can be deposited as thin films over standard silicon substrates or flexible substrates. Typically, piezoelectric sensors feature high sensitivity, a wide dynamic range, and are self-powering; piezoelectric actuators enable high resolution, large force, and/or large displacement generation. The strong electromechanical coupling, simple geometric implementation, and high energy density endow the piezoelectric device with the capability of energy harvesting. The appeal of piezoelectric materials for MEMS/NEMS has been constantly growing, in particular, with the increasing commercial success of piezoelectric MEMS/NEMS devices. The upcoming era of Big Data, sensors, the Internet of Things (IoT), and Artificial Intelligence (AI) has been offering new opportunities and challenges to piezoelectric MEMS/NEMS devices, and we are seeing researchers throughout the world actively tapping into the state-of-the-art micro/nano-fabrication process, promoting advanced integration techniques, and exploring innovative applications to unleash the potential of piezoelectric MEMS/NEMS devices. In this Special Issue, we invite submissions exploring the latest advances in the field of piezoelectric MEMS/NEMS devices.

Dr. Wei Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric sensors and actuators
  • microrobotics
  • piezoelectric MEMS resonators
  • acoustic MEMS devices
  • surface acoustic wave devices
  • energy-harvesting technologies
  • simulation and modeling of piezoelectric MEMS
  • application of smart materials in MEMS
  • micro/nanofabrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5683 KiB  
Article
An Ion Discharge-Driven Thruster Based on a Lithium Niobate Piezoelectric Transformer
by Qiannan Tao, Xinshuai Wang, Yang Gu and Wei Li
Micromachines 2025, 16(3), 277; https://doi.org/10.3390/mi16030277 - 27 Feb 2025
Viewed by 430
Abstract
Microrobots, characterized by their small size, flexibility, and portability, have a diverse range of potential applications. However, microrobots’ actuation (piezoelectric ceramics, dielectric elastomers, ion winds, etc.) often requires a high voltage, typically hundreds of volts. The lithium niobate transformer (LNT), a piezoelectric voltage [...] Read more.
Microrobots, characterized by their small size, flexibility, and portability, have a diverse range of potential applications. However, microrobots’ actuation (piezoelectric ceramics, dielectric elastomers, ion winds, etc.) often requires a high voltage, typically hundreds of volts. The lithium niobate transformer (LNT), a piezoelectric voltage transformer, presents a promising solution for miniaturizing high-voltage power supplies due to its compact size, low weight, and high step-up ratio. This study explores the effects of structural parameters and external circuits on the resonant frequency and step-up ratio of the LNT through numerical simulations and experiments. The results indicate the following: (1) the second-order longitudinal vibration frequency of the lithium niobate (LN) plate inversely correlates with its length; (2) the thickness and width of the plate have minimal impact on the frequency; (3) the step-up ratio increases as the plate thickness decreases. The experimental results suggest that LN plates with a thickness of 1 mm are preferable due to the fragility of 0.5 mm plates, especially at the output end. Additionally, optimizing the input circuit enhances voltage amplification, allowing the LNT to generate sufficient output voltage for corona discharge. These findings highlight the potential of LNTs for efficiently and reliably powering small-scale devices. Full article
Show Figures

Figure 1

22 pages, 7032 KiB  
Article
Magnetic Excitation for Coupled Pendulum and Piezoelectric Wave Energy Harvester
by Wuwei Feng, Xiang Luo, Shujie Yang and Qingping Zou
Micromachines 2025, 16(3), 252; https://doi.org/10.3390/mi16030252 - 24 Feb 2025
Viewed by 522
Abstract
Wave energy is one of the most reliable and promising renewable energy sources that has attracted lots of attention, including piezoelectric wave energy harvesting devices. One of the challenges for piezoelectric wave power generation is the relatively low-frequency wave environments in the ocean. [...] Read more.
Wave energy is one of the most reliable and promising renewable energy sources that has attracted lots of attention, including piezoelectric wave energy harvesting devices. One of the challenges for piezoelectric wave power generation is the relatively low-frequency wave environments in the ocean. Magnetic excitations are one of the techniques used to overcome this issue. However, there is a lack of understanding of the mechanisms to maximize the electric power output of piezoelectric wave energy harvesters through magnetic excitations. In the present study, magnetic excitation experiments were conducted to investigate the power generation of a coupled spring pendulum piezoelectric energy harvester under various magnetic field conditions. Firstly, the mass of the load magnet that can induce the resonance phenomenon in piezoelectric elements was experimentally determined. Then, the power generation of piezoelectric elements was tested under different excitation magnetic spacings. Finally, the influence of different distribution patterns of excitation magnets on the performance of piezoelectric elements was tested. It was found that under the conditions of a load magnet mass of 2 g, excitation magnet spacing of 4 mm, and two excitation magnets stacked on the inner pendulum, optimum power generation of the piezoelectric wave harvester was achieved with a peak-to-peak output voltage of 39 V. The outcome of this study provides new insight for magnetic excitation devices for piezoelectric wave energy harvesting to increase the feasibility and efficiency of wave energy conversion to electrical energy. Full article
Show Figures

Figure 1

22 pages, 2271 KiB  
Article
Design Parameters Affecting the Performance of Vortex-Induced Vibration Harvesters
by Alberto Pasetto, Michele Tonan, Federico Moro and Alberto Doria
Micromachines 2025, 16(2), 122; https://doi.org/10.3390/mi16020122 - 22 Jan 2025
Viewed by 673
Abstract
Vortex-induced vibration harvesters are usually equipped with small piezoelectric patches mounted near the cantilever clamp, where the largest longitudinal stress occurs. This paper, aiming to improve energy harvesting performance, investigates the possibilities of extending the patch length and modifying the length and mass [...] Read more.
Vortex-induced vibration harvesters are usually equipped with small piezoelectric patches mounted near the cantilever clamp, where the largest longitudinal stress occurs. This paper, aiming to improve energy harvesting performance, investigates the possibilities of extending the patch length and modifying the length and mass of a bluff body mounted on a harvester to induce vortex shedding. A novel analytical model based on dimensionless numbers is presented to determine the output voltage generated by a cantilever harvester subjected to periodic vortex shedding. This model highlights the design parameters having the largest influence on harvester performance and provides guidance to the planning of experimental tests and the interpretation of experimental results. Some prototype harvesters with different designs are built. First, experimental tests are carried out to identify the natural frequencies and damping ratios of the prototypes; then, the prototypes are tested in a wind tunnel to assess energy harvesting performance. The best performance is achieved when the patch length is about 20% of the cantilever length, the bluff body is long, and its mass reaches the minimum value. This result agrees with the prediction of the model. Full article
Show Figures

Figure 1

14 pages, 5979 KiB  
Article
Design, Fabrication, Characterization, and Simulation of AlN-Based Piezoelectric Micromachined Ultrasonic Transducer for Sonar Imaging Applications
by Wenxing Chen, Shenglin Ma, Xiaoyi Lai, Zhizhen Wang, Hui Zhao, Qiang Zha, Yihsiang Chiu and Yufeng Jin
Micromachines 2024, 15(6), 781; https://doi.org/10.3390/mi15060781 - 13 Jun 2024
Cited by 3 | Viewed by 4214
Abstract
To address the requirements of sonar imaging, such as high receiving sensitivity, a wide bandwidth, and a wide receiving angle, an AlN PMUT with an optimized ratio of 0.6 for the piezoelectric layer diameter to backside cavity diameter is proposed in this paper. [...] Read more.
To address the requirements of sonar imaging, such as high receiving sensitivity, a wide bandwidth, and a wide receiving angle, an AlN PMUT with an optimized ratio of 0.6 for the piezoelectric layer diameter to backside cavity diameter is proposed in this paper. A sample AlN PMUT is designed and fabricated with the SOI substrate-based bulk MEMS process. The characterization test result of the sample demonstrates a −6 dB bandwidth of approximately 500 kHz and a measured receiving sensitivity per unit area of 1.37 V/μPa/mm2, which significantly surpasses the performance of previously reported PMUTs. The −6 dB horizontal angles of the AlN PMUT at 300 kHz and 500 kHz are measured as 68.30° and 54.24°, respectively. To achieve an accurate prediction of its characteristics when being packaged and assembled in a receive array, numerical simulations with the consideration of film stress are conducted. The numerical result shows a maximum deviation of ±7% in the underwater receiving sensitivity across the frequency range of 200 kHz to 1000 kHz and a deviation of about 0.33% in the peak of underwater receiving sensitivity compared to the experimental data. By such good agreement, the simulation method reveals its capability of providing theoretical foundation for enhancing the uniformity of AlN PMUTs in future studies. Full article
Show Figures

Figure 1

Back to TopTop