Electrokinetic Particle and Fluid Transport Driven by Solute Concentration and Thermal Gradients

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "C1: Micro/Nanoscale Electrokinetics".

Deadline for manuscript submissions: 1 August 2025 | Viewed by 644

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
Interests: complex fluids; electrokinetics; hydrophobicity; porous media; rheology

Special Issue Information

Dear Colleagues,

Solute concentration gradients and thermal gradients are promising alternatives to conventional pressure gradients for microscale and nanoscale electrokinetic particle and fluid transport. Recent theories and experiments have demonstrated new transport phenomena, including instability, mixing, particle entrainment, phase separation, and reversals in particle and fluid motion. These contribute to novel applications, such as nanoparticle drug delivery, enhanced oil recovery, the mixture and separation of colloidal species, the manufacture of colloidal films, as well as water and surface cleaning. This Special Issue focuses on studies regarding the electrokinetic particle and fluid transport driven by solute concentration gradients, thermal gradients, and/or a combination of these mechanisms. We welcome the submission of manuscripts that are based on sound scientific theories and/or experiments.

Dr. Henry C. W. Chu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diffusiophoresis
  • diffusioosmosis
  • thermophoresis
  • thermoosmosis
  • electrodiffusiophoresis
  • electrodiffusioosmosis
  • electrothermophoresis
  • electrothermoosmosis
 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1307 KiB  
Article
Transient Gel Diffusiophoresis of a Spherical Colloidal Particle
by Hiroyuki Ohshima
Micromachines 2025, 16(3), 266; https://doi.org/10.3390/mi16030266 - 26 Feb 2025
Viewed by 493
Abstract
A general theory is presented to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in an uncharged gel medium containing a symmetrical electrolyte when an electrolyte concentration gradient is suddenly applied. We derive the inverse Laplace transform of an approximate [...] Read more.
A general theory is presented to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in an uncharged gel medium containing a symmetrical electrolyte when an electrolyte concentration gradient is suddenly applied. We derive the inverse Laplace transform of an approximate expression for the relaxation function R(t), which describes the time-course of the ratio of the diffusiophoretic mobility of a weakly charged spherical colloidal particle, possessing a thin electrical double layer, to its steady-state diffusiophoretic mobility. The relaxation function depends on the mass density ratio of the particle to the electrolyte solution, the particle radius, the Brinkman screening length, and the kinematic viscosity. However, it does not depend on the type of electrolyte (e.g., KCl or NaCl), which affects only the steady-state gel diffusiophoretic mobility. It is also found that the expression for the relaxation function in transient gel diffusiophoresis of a weakly charged spherical colloidal particle with a thin electrical double layer takes the same form as that for its transient gel electrophoresis. Full article
Show Figures

Figure 1

Back to TopTop