Microdevices and Electrode Materials for Electrochemical Applications

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "C:Chemistry".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 422

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
Interests: electrode materials and sensors; lithium ion battery; dual ion battery; sodium ion battery; electrolyte additive for battery application
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, titled “Microdevices and Electrode Materials for Electrochemical Applications”, highlights the critical intersection between microscale engineering and advanced electrochemical systems. As electrochemical technologies evolve to meet the demands of next-generation energy storage and sensing systems, the development of innovative microdevices and tailored microelectrode materials is essential. This Special Issue invites contributions that explore breakthroughs in electrode materials, electrolytes, and functional interfaces relevant to lithium-ion, sodium-ion, and dual-ion batteries, as well as fuel cells and smart sensing platforms. Of particular interest are studies on smart binders, electrolyte additives, and nanostructured materials that enhance electrochemical performance and device miniaturization. By bridging materials science with microscale fabrication, this Special Issue aims to accelerate advancements in compact, efficient, and high-performance energy and sensing technologies.

This Special Issue features research papers, communications, and review articles that focus on the novel design, fabrication, and modeling of electrodes and microdevices in electrochemical applications, exploring how novel electrode materials and fabrication techniques are shaping the next generation of electrochemical devices and applications. We look forward to receiving your contributions.

Dr. Tejaswi Tanaji Salunkhe
Prof. Dr. Il Tae Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrode materials
  • microdevices
  • electrochemical applications
  • electrosynthesis
  • electrolysis
  • batteries
  • sensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5481 KB  
Article
Dual Surfactant-Assisted Hydrothermal Engineering of Co3V2O8 Nanostructures for High-Performance Asymmetric Supercapacitors
by Pritam J. Morankar, Aditya A. Patil, Aviraj Teli and Chan-Wook Jeon
Micromachines 2025, 16(12), 1334; https://doi.org/10.3390/mi16121334 - 27 Nov 2025
Viewed by 253
Abstract
This study presents a dual surfactant-assisted hydrothermal approach for the synthesis of Co3V2O8 (CoVO) nanostructures and their surfactant-modified derivatives, PVP-assisted Co3V2O8 (P-CoVO) and PVP–SDS co-assisted Co3V2O8 (P/S-CoVO), which [...] Read more.
This study presents a dual surfactant-assisted hydrothermal approach for the synthesis of Co3V2O8 (CoVO) nanostructures and their surfactant-modified derivatives, PVP-assisted Co3V2O8 (P-CoVO) and PVP–SDS co-assisted Co3V2O8 (P/S-CoVO), which were directly grown on nickel foam. The use of PVP and SDS enabled controlled nucleation and growth, yielding a hierarchical nanoflower-like morphology in P/S-CoVO with increased porosity, a higher surface area, and uniform structural features. Comprehensive physicochemical characterization confirmed that surfactant incorporation effectively modulated particle size, dispersion, and active-site availability. Electrochemical measurements demonstrated that P/S-CoVO exhibited superior performance, with the largest CV area, low equivalent series resistance (0.52 Ω), and a maximum areal capacitance of 13.71 F cm−2 at 8 mA cm−2, attributable to rapid redox kinetics and efficient ion transport. The electrode also showed excellent cycling stability, retaining approximately 83.7% of its initial capacitance after 12,000 charge–discharge cycles, indicating robust structural integrity and interfacial stability. Additionally, an asymmetric supercapacitor device (P/S-CoVO//AC) delivered a high energy density of 0.082 mWh cm−2, a power density of 1.25 mW cm−2, and stable operation within a 1.5 V potential window. These results demonstrate that cooperative surfactant engineering provides an effective and scalable strategy to enhance the morphology, electrochemical kinetics, and durability of Co3V2O8-based electrodes for next-generation high-performance supercapacitors. Full article
(This article belongs to the Special Issue Microdevices and Electrode Materials for Electrochemical Applications)
Show Figures

Figure 1

Back to TopTop