You are currently viewing a new version of our website. To view the old version click .

Evolutionary Algorithms in Engineering Design Optimization

Special Issue Information

Dear Colleagues,

Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, allowed to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are comprised of the following: they do not require any requisite to the objective/fitness evaluation function (e.g., continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry.

From the application point of view, in this Special Issue proposal, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, chemical and materials science, civil, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc.

Within the EA field, the integration of innovative and improvement aspects in the algorithms (e.g., genetic algorithms, differential evolution, evolution strategies, etc.) for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modeling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc.

Assoc. Prof. Dr. David Greiner
Prof. Dr. António Gaspar‐Cunha
Assoc. Prof. Dr. Daniel Hernández-Sosa
Assoc. Prof. Dr. Edmondo Minisci
Assoc. Prof. Dr. Aleš Zamuda
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • decision making
  • design optimization
  • engineering design
  • engineering optimization
  • evolutionary algorithms
  • multidisciplinary optimization
  • multi-objective optimization
  • optimum design
  • optimization in aerospace
  • optimization under uncertainty
  • robustness of the solutions
  • surrogate based optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers