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Abstract: The actual behavior of welded T-junctions in tubular structures depends strongly on the
topology of the junction at the joint level. In finite element analysis, beam-type elements are usually
employed due to their simplicity and low computational cost, even though they cannot reproduce
the joints topologies and characteristics. To adjust their behavior to a more realistic situation, elastic
elements can be introduced at the joint level, whose characteristics must be determined through
costly validations. This paper studies the optimization and implementation of the validation data,
through the creation of an optimal surrogate model based on neural networks, leading to a model
that predicts the stiffness of elastic elements, introduced at the joint level based on available data. The
paper focuses on how the neural network should be chosen, when training data is very limited and,
more importantly, which of the available data should be used for training and which for verification.
The methodology used is based on a Monte Carlo analysis that allows an exhaustive study of both
the network parameters and the distribution and choice of the limited data in the training set to
optimize its performance. The results obtained indicate that the use of neural networks without a
careful methodology in this type of problems could lead to inaccurate results. It is also shown that a
conscientious choice of training data, among the data available in the problem of choice of elastic
parameters for T-junctions in finite elements, is fundamental to achieve functional surrogate models.

Keywords: T-junctions; neural networks; finite elements analysis; surrogate; beam improvements;
beam T-junctions models; artificial neural networks (ANN) limited training data

1. Introduction

The utilization of finite element modeling for the simulation of structural components
has become a fundamental part of modern engineering, being utilized in the majority of
industrial fields.

Despite the advances of the finite element analysis (FEA) software and the increased
calculation capabilities, for the modeling of tubular structures in which the length of the
profiles is significantly bigger than the width and thickness of the sections, the beam type
elements are still widely utilized despite their limitations and the fact that they cannot
reproduce the characteristics of the joints neither from the geometrical point of view nor
from the behavioral one. Figure 1 presents the equivalent beam type element T-junction
that would be utilized for the simulation of the original T1 and T2 junctions.

The joint configuration of these T-junctions (T1 and T2) has a direct influence on the
behavior of the structures, determining significant behavioral differences depending on the
type and direction of the load. Despite this reality, the beam type element equivalent model
will always be composed of three nodes and three beam type elements. This way all the
geometrical characteristics of the joint get lost into an infinitely rigid node, which represents
a significant shortcoming of these elements in the correct characterization of T-junctions.
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Figure 1. T-junctions equivalent beam type element model.

This issue could be avoided by utilizing shell or volume type elements. However,
these alternatives are feasible only for small models, which is not the case when common
tubular structures such as buses upper modules, bridges, support structures, or similar big
structures need to be modeled. The complexities of the modeling process along with the
increase in computational resources due to the increment of nodes make these alternatives
unfeasible for general industrial use.

The magnitude of this issue is illustrated in Table 1, in which a comparative analysis
is performed based on the number of nodes and degrees of freedom for a simple T-junction
of 1 m by 1 m having a standard square hollow profile of 40 mm × 40 mm × 4 mm
presented in Figure 2. The table presents the comparative analysis of the T-junction,
modeled using beam, shell and volume element types, for comparative purposes, the three
models where meshed using 4 mm first order elements. The resulting number of nodes are
a consequence of the meshing dimension and the degrees of freedom are calculated taking
into consideration the mathematical formulation of the elements. In the case of the beam
and shell elements we have 6 degrees of freedom (DOF) per node and in the case of the
volume type elements we have 3 DOF per node. A comparative evaluation criterion taking
into consideration the complexity of the modeling process and the precision of the results,
based on the experience of the authors for modeling structures. The value is calculated as
the product between the DOFs and the complexity of the modeling process along with the
precision of the results (Table 1).

Table 1. Comparative analysis between characteristics of T-junctions modeled with beam, shell, and
volume type elements.

Element
Type

No. of
Nodes DOFs Complexity of

Modeling (1–3)
Results

Precision (1–3)
Evaluation
Coefficient

Beam 910 5460 1 3 16,380
Shell 19,520 117,120 2 2 468,480

Volume 36,144 108,432 3 1 325,296
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Figure 2. Analyzed T-junction with the cross section detail.

From the previously presented results, it can be seen that, despite their limitations,
the beam type elements represent the most feasible alternative when analyzing tubular
structures in which the relation of the length and the profile dimensions is quite significant.
Due to the above, it can be concluded that the calculation of complex tubular structure
(buses, bridges, and railway carriages) is significantly simplified by using beam-type
elements. This is why, these elements have been widely recommended [1–3] for modeling
large tubular structures.

However, despite being recommended and widely utilized in the industry, the beam
formulation is simply not designed to take into account and reproduce the behavior of real
joints, since all the elements that reach the same joint are joined in a single infinitely rigid
node [4–6]. Furthermore, beam-type elements cannot represent the topological character-
istics of the joints and do not differentiate between joints that are apparently similar, but
with different topologies. Therefore, there is a clear necessity for the improvements of the
beam modeled T-junctions.

One of the improvement solutions proposed in order to avoid ignoring the specific
characteristics of the joint topologies was the introduction of elastic elements at the joint
level when modeling T-junctions. In [4] it was shown that the flexibility of the joints has a
determining influence on the behavior of the analyzed structures and could not be ignored.
Later, in [5] it was again confirmed that ignoring the influence of joint stiffness on structural
behavior was a mistake. In this case, it was shown that, when the stiffness of the elastic
elements in the joint exceeds a certain maximum value, the total deformation energy of the
vehicle is insensitive to the joint.

Furthermore, in [7], Lee presented the hypothesis that the behavior of welded joints
was elastic and linear, obtaining a general methodology for the model of joints. Applying
this, in [8], three rotational springs were introduced into the joints with the aim of opti-
mizing vehicle structures. This way, the deformations that could occur in the joints due to
torsional or bending moments were considered. In contrast, infinite stiffness values were
assumed in the axial directions, this study showed that it was possible to obtain better
approximations with this approach and validated modal calculations with experimental
modal analyses. The introduction of elastic elements when modeling beam T-junctions has
a fundamental advantage since it provides the possibility to modify the overall behavior
of the structure while maintaining the mass distribution of the input model, having the
downside of requiring the adjustment of the appropriate stiffness values which would lead
to the need for expensive experiments.

Another alternative was to model beam T-junctions with variable stiffness in the
adjacent regions to the joints, this was proposed in [9] since the rigidity of the joint is
much greater than the surrounding area. Later, in [10] the idea was reformulated by using
partially rigid beams. Taking advantage of this new concept, in [11] H-shaped structures
with rectangular hollow profiles were studied and partially rigid beams were used at



Mathematics 2021, 9, 943 4 of 17

their joints, the model was validated through modal correlation with good results. The
same methodology was applied in [12] for the optimization of a three-dimensional bus
structure formed by hollow rectangular profiles of 40 mm × 40 mm × 3 mm. To do this, it
was necessary to perform a sensitivity analysis to identify the joints that had the greatest
influence on the overall behavior of the structure, this way, partially rigid beams were
progressively introduced in the most important regions. Alternatively, a new technique
was proposed in [13]. In this case, the parameters of the elements near the joint were
modified. This approach of the problem is similar to the previous one, but also allowing
the modification of the mass and rigidity independently.

Given these limitations, some authors have used shell or volume type elements as an
alternative for the study of the joints, modeling the rest of the structure with beam type
elements, these elements allow the characteristics of the joint to be modeled more accurately.
In [14] the shell element model was applied to tubular joints and major improvements
were reported. In [15] the models of a single beam with shell elements were compared
against the same shell and beam modeled and it was shown that hybrid modeling could
reduce the number of elements without compromising the results.

The same approach has been applied to the analysis of structural joints in cars. Thus,
hybrid modeling has led to satisfactory results [14,16,17] in this field, however, the appli-
cation of this hybrid technique to larger models (e.g., hollow beam structures in buses) is
unattractive, since it would be necessary to specifically model a large number of joints,
which leads to a substantial increase in the model preparation time and more computational
resources by increasing the number of elements in the model.

In their study [18] developed an alternative beam T-junction model that allowed
them to obtain more precise deformation results when utilizing beam type elements, also
allowing them to take into consideration different T-junction configurations. Their focus
was to improve the results provided by beam type elements when simulating structures
that by their characteristics cannot be realistically simulated with anything but beam type
elements due to the complexity of the modeling process, the computational requirements
or other practical aspects. The authors proposed an alternative beam model in which they
introduced a total of six elastic elements at the joint level along with a complete methodol-
ogy based on finite element methodology (FEM) comparative analysis that allowed them to
improve the behavior of the modeled T-junctions in terms of displacements. This proposal,
however, required the user to reproduce the complete methodology in order to obtain six
stiffness values for each individual modeled T-junction making it somehow not attractive
when having to characterize a wide variety of T-junction combinations. Figure 3 presents
the alternative beam T-junction model proposed and utilized by [18]. This T-junction
introduces a total of six elastic elements at the joint level, three of them behaving as linear
springs (represented by the letter k) and noted with the sub index ux, uy, and uz correspond-
ing to (u) displacement and (x, y, z) the axial directions and another three corresponding to
(r) rotations along the (x, y, z) axial directions.

Figure 3. Alternative T-junction model.
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This approach was also used by [19], in which multiple simulations utilizing the most
common profiles found in buses and coaches upper structures were performed, followed
by a statistical analysis in order to obtain regression models for the calculation of the
stiffness values for the alternative T-junctions, based on the profile dimensions (E1, E2, E3,
g1, and g2). They utilized a Bayesian Kriging regression model that provided satisfactory
results, however, the regression equations obtained were notably complicated having, in
some cases, more than 33 terms per equation, making them impractical for everyday use in
the wide industry. These regressions were obtained with a MISO (multiple input, single
output) approach in which a total of six regression models had to be calculated, one for
each kux, kuy, kux, krx, kry, and krz stiffness value, leading to the necessity of any potential
user to use six complex equations for the estimation of the stiffness values for a single
T-junction type.

From the previous studies it can be concluded that it is possible to make an adjustment
of the existing data coming from analysis by finite elements in complicated models. In
this way, the time and effort needed to carry out new simulations for sets of junction
parameters not previously studied can be drastically reduced. Unfortunately, the basic
laws that allow for optimal adjustment are not known. In this sense, artificial neural
networks (ANN) surrogate models allow, from sufficient known training data, to infer
the unknown laws behind the analyzed data. The use of ANNs is not new. There are
countless studies that have applied them to the most diverse applications. Specifically, in
the last years, the development and implementation of neural networks for the evaluation
of multiple processes with a pronounced non-linear behavior has become a reality [20].
ANN have also been utilized along with finite elements such as in [21] where the authors
implemented their use with good results in the evaluation of damage detection in bridges.
In [22], ANN was used to simplify contact estimation models in ANSYS®. In [23] the use
of response surface and ANN models was successfully evaluated against other methods of
structural reliability analysis. In addition, ANNs can generate valid surrogated models,
based on data obtained from finite elements, to evaluate such complicated issues as noise
reduction in braking systems, with very high accuracy [24].

Taking into consideration the benefits of the implementation of neural networks
for finite element analysis, the authors considered of great interest the development of a
methodology for the estimation of the stiffness values utilizing ANN as an alternative to the
utilization of Bayesian Kriging regressions similar to those utilized in [19], that provided
satisfactory results although not realistic from the practical point of view due to the
complexity of the obtained equations. In fact, ANNs have been used as a valid alternative to
such Kriging networks in various articles for the creation of metamodels [25,26] providing
very satisfactory results.

This article studies the application of ANN in the creation of surrogate models that
allow inferring the information obtained from complicated finite element models, such
as those obtained in the analysis of optimal stiffness to predict the behavior of T-welded
junctions. The biggest problem when trying to replace finite element modeling with
surrogate models is that a lot of training data needs to be obtained for the prediction to be
reliable. However, obtaining this data is often very costly in time and effort. There is also
uncertainty about how the ANN should be created to learn effectively and be useful for
unknown finite element models.

This article presents a detailed study, leading to the presentation of a new methodology
for the creation of surrogate models (or metamodels) based on data obtained from finite
element calculations. The particularity in this case is that the number of initial data, for
the training of the model, is very limited. Few training data can make the model a failure.
However, as mentioned, this is usually a common situation in FEM due to the high time
of creation of FEM models and their calculation. The possibility of creating models that
can learn from these “few” data obtained from FEM calculations, using them in an optimal
way, can allow to obtain more precise models and enable the use of ANN to cases with
limited data.
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The rest of the article is distributed as follows: Section 2 presents the methodology
followed for the determination of the ANN topology and the optimal use of the available
data; Section 3 describes the results and the analyses obtained, which are discussed in
Section 4. Finally, Section 5 presents the conclusions, applicability, and future lines.

2. Methodology

Using the same data from [19] the experimental design for the neural network anal-
ysis had a five dimensional input and six dimensional output, where the input values
represented the dimensions of the analyzed T-junction profiles (E1, E2, E3, g1, and g2) and
the output values represented the calculated stiffness values for the alternative T-junction
model having 3 axial spring (kux, kuy, kuz) and 3 rotational springs (krx, kry, krz) at the
junction level as presented in Figure 3.

This data is based on hollow rectangular profiles commonly utilized in the buses and
coaches upper structures, focusing the study on a total of 243 profile combinations for two
different T-junction configurations named T1 and T2 presented in Figure 1.

The 243 input values were obtained by getting all of the possible combinations for the
five input variables, each variable having 3 levels as presented in Table 2.

Table 2. Input base variable values.

E1
(mm)

E2
(mm)

E3
(mm)

g1
(mm)

g2
(mm)

40 40 40 2 2
60 60 60 3 3
80 80 80 4 4

As can be seen in the previous table, the input data is staggered and only provides
information about the studied process for specific values, leaving significant empty spaces
between variables as can be seen in Figure 4, in which the utilized input values for the
E1–E3 characteristics are plotted in a 3D graphic.

Figure 4. Three dimensional plot for the E1–E3 utilized values.

Since the base methodology requires comparative FEM analysis between beam and
shell modeled T-junctions, for example adding 2 additional thicknesses for the g1 and
g2 variables, would require a total of 675 comparative simulations for each one of the T1
and T2 junctions determining a significant increase in the required computational time.
This leads to a situation in which predictive models need to be constructed from a limited
amount of staggered input data, in which a proper selection of the neural network training
data is of paramount importance. To illustrate that, Figure 5 presents the average error
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obtained for 50 different neural networks, constructed using different training data sets
versus using the same training data set. This error is determined for each neural network
as the average difference between the network output values and the target outputs of the
validation data obtained from FEM models. As it can be seen, although both cases reach
the same average error (0.072), the standard deviation is almost one order of magnitude
higher in the case of neural networks constructed using different training data, evidencing
the importance of a proper selection of this data.

Figure 5. Neural network error dispersion comparison between using same versus different
training data.

This behavior motivates a more detailed study of the performance of neural networks
with respect of the chosen data set. To carry out this study it was necessary to decide
the topology and design of a neural network that could be effectively trained from few
input data. In a neural network, the increase of hidden layers and nodes in each layer,
requires a lot of training data to avoid the known problem of over fitting. As the number
of training data is very limited in our case the network was kept simple, with only one
hidden layer and a limited number of nodes (1 to 20) within that layer. In addition,
to check the performance of the neural network, the initial data were divided into two
subsets. The first one was dedicated to the training of the network (75% of them) and the
second one to its validation (25%). Usually, the distribution of training and validation
data is around 50% in cases where there are large amounts of data. However, in this
case, due to the high cost of obtaining additional training data, it was decided to vary the
standard. The rest of the parameters and functionality of the neural network were also
kept simple. For the comparison between the outcome between neural networks a limit
of 2000 training iterations (epocs) was taken, with a learning rate of 0.1. The activation
function of the neurons was the hyperbolic tangent sigmoid, and the training was based on
a Levenberg–Marquardt backpropagation algorithm, Figure 6 presents the characteristics
of the ANN.

Figure 6. Characteristics of the ANN evaluated.
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As mentioned, the limitation of training data has a fundamental influence on the
choice of the type of neural network to be used, its topology and its configuration, since
it can cause the network not to learn the pattern behind the data, or to learn it too well,
fitting perfectly to the training data, but offering very poor results in the validation data.
This effect is called over fitting and it is critical to avoid it. The goal is to train with as much
data as possible and to learn in a robust way and to reduce the error in the validation data.

But, apart from the issue of reasoned choice of network topology, there is the major
problem of optimal selection of training data. Since there is so little training data, the
information that such data provides about the behavior of the welded T-joints is very
valuable. The choice of which data should be used for network training and which data
should be used for validation has a critical influence on the result of the analysis. Therefore,
the choice of which data will go to 75% of the training set should not be made at random in
this type of problem. At this point, the choice of suitable training sets is not evident. For
this reason, a thorough study is needed to shed light on this point.

In this sense, next sections show the results of this complete study, where a total
of 1000 different training data sets were used to construct the neural network, leading
to a total of 20,000 different neural networks for each joint configuration. Input layer
consisted of 5 neurons containing input information of the joint dimensions (E1, E2, E3,
g1, and g2, see Figure 3 and Table 2). For the output layer both MISO (multiple input
single output) and MIMO (multiple input multiple output) models were initially explored.
Both approaches showed very similar results, so it was decided to focus on MIMO models
due to the obvious computational cost saving of not having to construct independent
neural networks for each output. Thus, output layer consisted of 6 neurons with the 6 DOF
spring rates (kux, kuy, kuz, krx, kry, and krz, see Figure 3). Due to the different behavior of the
different joint configurations, independent neural networks were analyzed for T1 and T2
junctions (Figure 1). The following Figure 7 shows a block diagram with the methodology
used to construct and check the performance of each neural network. As it is shown, the
same input data with the geometric information that was used to construct the beam and
shell FEM models and obtain the spring stiffness, is used to feed the neural networks,
which are constructed using 1000 randomly chosen trained sets, and 1 to 20 neurons in its
hidden layer. For each network, the average error is recorded, which is obtained as the
mean absolute difference between the predicted and correct outputs of the validations set
(remaining 25% of the data).

Figure 7. Block diagram of the applied methodology for the selection of the best ANN.

Finally, once the complete methodology is executed, the best performance networks
are selected for further analysis in order to validate the selection methodology proposed.

3. Results and Analysis

In the following subsections, the most relevant information, and the obtained results
of the application of the methodology will be presented.
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3.1. Neural Networks Behavioral Analysis Results

This section shows all relevant findings encountered during the application of the
methodology itself. It should be noted that, although of great interest to understand the
behavior of the data, the analysis presented in this section in not strictly necessary to run
the methodology since it does not affect the network selection, which ultimately depends
in the overall average error.

In relation to the performance of the neural network with respect to the number of
neurons, Figure 8 shows the average error obtained for each spring and joint configuration,
averaged over the 1000 training data sets utilized. As it can be seen, the minimum error
values are generally obtained for a number of neurons that ranges approximately between
5 and 10. It can be also noticed that the error level is highly dependent on the spring
direction and the junction configuration.

Figure 8. Average errors in comparison to the number of nodes in the ANN (1000 networks).

Although in some cases the average error reach minimum values for more than
10 neurons, it was observed that the variability of these errors increased significantly as
the number of neurons is increased, and that some outputs with extremely bad predictions
where obtained. In this regard, Figure 9 shows the number of networks observed with
an average error above one, identified as outliers. It is clearly noticed that from about
10 neurons, outlier results start to increase. In general, springs with better performance
show fewer networks with exceptionally high errors.

Figure 9. Outlier networks with respect to the number of neurons.
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With respect to the performance of the networks regarding the training data, it was
noticed a dependency among the number of neurons, i.e., if any network performs opti-
mally for a given number of neurons, it will show the same tendency for the rest number of
neurons. To assess this, the 1000 networks were ranked from 1 (least error) to 1000 (highest
error) for each direction and number of neurons. If a given training data shows similar
rankings for all number of neurons, it would mean that such dependency of the perfor-
mance with respect to the number of neurons exists. On the other hand, if the rankings
from 1 to 20 neurons approach to a uniform distribution, it would indicate not dependency
at all. This behavior was quantified by means of the standard deviation of the rankings in
Figure 10, for both junction configuration and spring direction. It is noticed that dispersion
of rankings is always significantly lower than the one for uniform distribution (σ = 288.6),
and that it is especially low for networks that show best or worst rankings, meaning
that dependency is especially high in these cases. As expected, behavior differences are
observed between junction configuration and spring direction.

Figure 10. Network ranking dispersion with respect to the number of neurons.

Additionally to the relation of the network performance with respect to the number of
neurons, possible dependency with respect to the spring directions were also assessed to
check if a given network that performs optimally in one direction, should show the same
tendency for the rest of directions. To quantify that in an equivalent manner, standard
deviation of the rankings with respect to the spring directions were obtained for each
number of neurons, as shown in Figure 11. For the sake of clarity, and since the behavior was
found to be very similar for all number of neurons, only results for 1, 5, 10, and 15 neurons
are included. In this case, it is observed that for mid rankings, no significant dependency
between directions can be stated, since dispersions approaches to the one of uniform
distribution. In contrast, extreme rankings show once again lower dispersion, meaning that
networks with worst and best results will show dependency between spring directions.



Mathematics 2021, 9, 943 11 of 17

Figure 11. Network ranking dispersion with respect to the spring direction.

Finally, a detailed analysis of the characteristics of the networks that showed the best
results was carried out in order to evaluate if there is any affinity among them regarding
the input data and variable values. To do so, the 10 best overall ranked networks were
selected for both T1 and T2. Later, the input data that was present in at least 8 out of the
10 for all directions were accounted. These data are highlighted for the 243 input data
(abscissa), and for each spring direction (ordinate), for both T1 and T2 in Figures 12 and 13,
respectively. It can be noticed that there are certain input data that appears systematically
in all best performance networks (14 data inputs are shown for T1 in Figure 12, and 13 data
inputs are shown for T2 in Figure 13), regardless the spring directions. It is also noticed
that such data are different for T1 and T2 junction configurations.

Figure 12. Data frequency graph in the 10 best performance networks for T1. Most used 14 input
data are shown.
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Figure 13. Data frequency graph in the 10 best performance networks for T2. Most used 13 input
data are shown.

Furthermore, the values of the geometric variables contained in these input data
that appeared systematically in at least 8 out of the 10 best performance networks (14 in
Figure 12 and 13 in Figure 13) are analyzed in Figures 14 and 15 for T1 and T2, respectively.
The figures show the frequencies of each parameter value. It is noticed a clear tendency
to certain values for some of the parameters. Junction configuration T1, for example,
takes preferably lower values of E2, and higher values for E3 and g1; meanwhile, junction
configuration T2 shows preference for lower values of E1 and E2, and higher values for g1.
A priori, no physical meaning to explain this behavior and, its differences between junction
configuration, was found.

Figure 14. Variables values of frequent input data in best performance networks—T1.

Figure 15. Variables values of frequent input data in best performance networks—T2.

From the evaluation of the 1000 different networks, the best overall for T1 and T2 was
selected for validation. Since no performance improvement was observed from around
10 neurons, and in order to avoid isolated high error values, the selection was limited
to a maximum of 10 neurons. The selected ones were a 9 and 10 neuron network for T1
and T2, respectively, that performed with overall average errors of 0.039 and 0.035. The
corresponding neuron weights are gathered in Tables 3 and 4 (for T1), and in Tables 5 and 6
(for T2).
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Table 3. Input layer to hidden layer weights for T1.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9

Input
layer

E1 17.68 −0.52 0.38 0.90 −0.38 −0.38 0.05 −0.74 3.50
E2 −1.49 −0.01 −0.02 1.75 0.02 0.83 1.50 0.21 6.05
E3 0.90 −0.15 −0.96 −1.34 0.96 −0.97 1.03 1.61 −4.16
g1 0.79 −0.73 3.25 −0.32 −3.23 −0.48 23.36 0.66 −1.60
g2 −0.30 −0.05 −0.81 −0.28 0.81 0.09 1.15 0.83 0.06

Table 4. Hidden layer to output layer weights for T1.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9

Output
layer

kux −0.63 −0.68 −5.86 −286.73 −5.85 −44.07 −0.07 10.83 0.82
kuy 0.30 −0.44 21.54 −10.59 21.43 42.36 0.21 18.12 −0.01
kuz −3.08 −0.16 2.93 6.33 2.94 −245.51 −0.01 22.29 −0.20
krx 0.94 −0.10 30.83 −117.97 30.96 103.39 0.01 157.71 0.19
kry −0.43 0.08 3.82 19.53 3.83 −154.39 0.01 21.58 −0.36
krz −0.13 −0.26 22.90 −42.41 22.81 29.46 0.21 37.62 0.07

Table 5. Input layer to hidden layer weights for T2.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9 10

Input
layer

E1 −0.05 0.41 −0.21 0.53 0.13 −0.34 0.43 15.70 2.01 −0.13
E2 −18.19 −0.06 0.00 1.01 0.12 0.96 −2.03 2.67 −2.19 −0.12
E3 0.34 −0.08 0.05 −1.18 0.21 −0.65 0.33 −3.50 −48.09 −0.22
g1 −20.36 0.13 0.09 −0.45 0.37 −0.09 −1.42 −0.83 21.88 −0.35
g2 20.00 0.24 −0.72 0.23 0.19 −0.51 2.22 −0.77 −25.75 −0.20

Table 6. Hidden layer to output layer weights for T2.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9 10

Output
layer

kux −0.02 91.15 44.78 18.55 −56.35 −92.22 0.26 3.80 −0.01 −77.39
kuy −0.06 18.77 26.16 −5.54 143.37 27.15 0.06 −9.37 −0.01 186.32
kuz −0.01 −0.59 14.25 −128.62 −34.06 −161.27 −0.20 −31.99 0.04 −49.50
krx 0.01 −14.05 −52.31 11.67 −28.38 48.26 0.86 −5.78 −0.01 −43.06
kry 0.00 −3.27 3.02 52.74 −24.07 −211.65 −0.35 −93.02 0.03 −34.27
krz −0.06 4.72 15.56 −22.93 149.42 18.68 0.03 −16.70 0.00 194.29

3.2. Analysis of Selected Neural Network

Although global evaluation of the 1000 different training data sets was based on
averaged errors and dispersions, a more detailed look on the network estimations becomes
necessary to complete the analysis and assess the capability to properly predict the vali-
dation outputs. In this regard, Figures 16 and 17 show the correct and estimated outputs
of the selected networks for T1 and T2, respectively. A general good fit can be observed.
It is noted that there are significant differences in the precision of some spring directions,
especially for T2 joint configuration, where UX, UY, RX, and RZ show an average error of
approximately one third with respect to the rest of directions. In any case, the worst-case
average error keeps below 7% regardless spring directions and junction configurations
(6.7% for RY in T2), which already supposes a significant error improvement with respect to
the original deviation in beam type structural models, which can reach up to 90% according
to [19].
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Figure 16. Validation results—T1.

Figure 17. Validation results—T2.

4. Discussion

A neural network-based approach is presented as an alternative to Bayesian Kriging
regressions for improving the accuracy of beam type element structural models. Due to the
limited amount of input data, an adequate selection of the training set was proved to be
fundamental in order to get valid results. In this regard, a methodology that deals with
this reality and ensures a valid choice of the training data was also developed.

The notable amount of information generated during the application of the method-
ology allowed a more profound study of the behavior and performance of the different
neural networks constructed. Such study is not strictly necessary to run the methodology
since it has no influence on the best network selections. Nevertheless, the information
obtained can be of great interest to increase the understanding about the input data and
the behavior of the networks, and thus be utilized in futures related studies.

The obtained results show that there is a general increase in the accuracy of the
networks when increasing the number of neurons up to 4 to 5. The optimal number of
neurons was observed to be dependent on the joint configuration and the elastic element
direction, ranging from 6 to 10, the use of more neurons increases the risk of obtaining
isolated extremely bad predictions, probably due to over fitting.
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It was also found that there is a clear correlation between the accuracy of the network
with respect to the number of neurons, meaning that if a certain training set presents high
precision for a given number of neurons, it will also present the same tendency for the rest.
With respect to the correlation of the accuracy of the networks with respect to the elastic
element direction, it was only observed for extreme ranked networks, i.e., only if a given
network is one of the best (or the worst) ranked for a specific direction, it will also tend to
be one of the best (or the worst) for other directions. Both T1 and T2 joint configurations
showed very similar behavior regarding these dependencies.

Additionally, there were located specific input data that appeared systematically in
the 10 most accurate networks, regardless the spring direction. Although the same was
observed for both joint configurations, the data that appeared systematically in T1 and
in T2 were different. It was also found that these data had preference to contain certain
variable values in the case of T1, lower values of E2 and higher values for E3 and g1 where
observed, while T2 showed preference for lower values of E1 and E2, and higher values
for g1.

A priori, no physical meaning was found to explain the behavior of the networks
for this data. Consequently, it cannot be stated that similar behavior should be noticed
in other structural problems. Future works would be needed to prove if these tendencies
apply to data sets of similar problems or could be even extensive to data sets of completely
different nature.

After running the 20,000 neural networks of the methodology, the least error networks
for T1 and T2 were selected for validation. As it was proven, from about 10 neurons
no accuracy improvement was observed at the same time the deviations on isolated
predictions increased, so such selection was limited from 1 to 10 neurons. Validation results
showed that some spring directions predictions were very close to the reference values,
with average errors around 2%. The highest average error was of 6.7% corresponding to
the Ry elastic element of the T2 junction.

From the performed study, it can be concluded that neural networks represent a solid
alternative to the Bayesian Kriging regressions for the accuracy improvement of structural
models constructed with beam type elements, as long as a proper selection of the training
data set is assured through the presented methodology.

The present study provides a detailed insight on all the relevant aspects and difficulties
that could be encountered when applying neural networks for the estimation of the elastic
element stiffness in the alternative beam T-junction model studied. At the same time, it
evaluates real aspects such as the generation of ANN with a reduced number of training
data, the high sensitivity of the process to the selection of the initial sampling for training,
and the deviation ranges that would be considered as acceptable so that any potential user
could apply this methodology with a significant amount of confidence.

The interactions that take place at the joint level of T-junctions are complex and
depend on the geometry of the junction, the type of loads and their direction. As it was
pointed in the literature, these interactions are hard to characterize, and thus the alternative
of presenting a complete methodology for the improvement of these T-junctions with a
significant degree of confidence suppose a valuable tool for the structural design using
finite element models.

5. Conclusions

In this paper the behavior of welded T-junctions in tubular structures was studied with
the purpose of improving their behavior by means of artificial neural networks trained
with finite element models. The topology of the junction at the joint level determines
significant behavioral differences that cannot be taken into consideration with regular
beam type elements.

To adjust their behavior to more precise results, elastic elements were introduced at
the joint level, characterizing their stiffness utilizing artificial neural networks. In this
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paper the optimization and implementation of the validation data, through the creation of
an optimal surrogate model based on neural networks was presented.

The results led to a model that predicted the stiffness of these elastic elements, in a
satisfactory manner. The paper also focuses on how the neural network should be chosen,
when training data is very limited and, more importantly, which of the available data
should be used for training and which for validation.

The results indicated that the use of neural networks without a careful methodology
in this type of problems could lead to inaccurate results.

The present work, more generally, is applicable to many other applications where
there is insufficient training data (or data that costs a lot of time or money to obtain). This
situation occurs in experimental trials, where the manufacture and use of the necessary
test equipment to obtain more data is limiting. Furthermore, this situation appears in the
computational calculation of complicated FEM or computational fluid dynamics (CFD)
models, where a complicated calculation can take several hours and days and obtaining a
large pool of data to train a neural network is pure utopia. In this sense, the methodology
presented in this paper would be applicable to all these cases where data availability is
scarce. The work presented is part of a broader development, where in the future it is
expected to apply this methodology to larger problems based on this type of profiles, such
as the study of bus structures.
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