Special Issue "Advanced Biochemical Sensors: Materials Research and Application"

A special issue of Materials (ISSN 1996-1944).

Deadline for manuscript submissions: 25 August 2020.

Special Issue Editor

Prof. Dr. Nicole Jaffrezic-Renault
E-Mail Website
Guest Editor
Institute of Analytical Sciences, UMR CNRS 5280, Department LSA, 5 Rue de La Doua, 69100 Villeurbanne, France
Interests: biosensors; impedance; immunosensors; conductometric sensors; enzymatic sensors; affinity sensors
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Materials research has greatly contributed to the improvement of the performances of advanced biochemical sensors. This Special Issue will present the latest trends of materials research in the field of advanced biochemical sensors.

  • New materials for optical, electrical, and acoustic transduction: Carbon-based materials (graphene, carbon nanotubes, etc.), nanostructured materials, quantum dots, etc.;
  • New materials for (bio)chemical recognition: Molecularly imprinted polymers, artificial enzymes;
  • Biosourced materials for the design of biochemical sensors;
  • Materials research for microtechnology, for 3D printing;
  • New materials for the encapsulation of biochemical sensors.

Review and research papers are welcome.

Dr. Nicole Jaffrezic-Renault
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detection
Materials 2020, 13(3), 688; https://doi.org/10.3390/ma13030688 - 04 Feb 2020
Cited by 1
Abstract
Phenolic compounds such as catechol are present in a wide variety of foods and beverages; they are of great importance due to their antioxidant properties. This research presents the development of a sensitive and biocompatible molecular imprinted sensor for the electrochemical detection of [...] Read more.
Phenolic compounds such as catechol are present in a wide variety of foods and beverages; they are of great importance due to their antioxidant properties. This research presents the development of a sensitive and biocompatible molecular imprinted sensor for the electrochemical detection of catechol, based on natural biopolymer-electroactive nanocomposites. Gold nanoparticle (AuNP)-decorated multiwalled carbon nanotubes (MWCNT) have been encapsulated in a polymeric chitosan (CS) matrix. This chitosan nanocomposite has been used to develop a molecular imprinted polymers (MIP) in the presence of catechol on a boron-doped diamond (BDD) electrode. The structure of the decorated MWCNT has been studied by TEM, whereas the characterization of the sensor surface has been imaged by AFM, demonstrating the satisfactory adsorption of the film and the adequate coverage of the decorated carbon nanotubes on the electrode surface. The electrochemical response of the sensor has been analyzed by cyclic voltammetry (CV) where excellent reproducibility and repeatability to catechol detection in the range of 0 to 1 mM has been found, with a detection limit of 3.7 × 10−5 M. Finally, the developed sensor was used to detect catechol in a real wine sample. Full article
(This article belongs to the Special Issue Advanced Biochemical Sensors: Materials Research and Application)
Show Figures

Figure 1

Back to TopTop