materials-logo

Journal Browser

Journal Browser

Advances in Hybrid Structure Manufacturing Technology

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Manufacturing Processes and Systems".

Deadline for manuscript submissions: closed (10 March 2025) | Viewed by 3471

Special Issue Editor


E-Mail Website
Guest Editor
Department of Nanomechatronics Engineering, Pusan National University, Pusan 46241, Republic of Korea
Interests: manufacturing of hybrid component; joining of dissimilar materials; FE analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advanced manufacturing technologies are required to produce hybrid structures with advanced high-strength steel, aluminum, magnesium, titanium, composites, etc. Additionally, they are needed to effectively join hybrid structures together, which can contribute to increasing the weight-to-strength structural performance of transportation components and decreasing the fuel consumption and gas emission of transportation systems.

Therefore, this Special Issue aims to provide a platform for the discussion of open issues and challenges related to various manufacturing strategies employable in hybrid structures.

Potential topics include, but are not limited to:

  • Design and analysis for the manufacturing of hybrid structures;
  • Advanced and novel manufacturing technologies for hybrid structures;
  • Additive manufacturing technologies for hybrid structures;
  • Advanced joining technologies for hybrid structures

Prof. Dr. Dae-Cheol Ko
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hybrid structures
  • forming
  • manufacturing technologies
  • additive manufacturing
  • joining technology
  • design and analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5955 KiB  
Article
Prediction of the Interface Behavior of a Steel/CFRP Hybrid Part Manufactured by Stamping
by Jae-Chang Ryu, Chan-Joo Lee, Do-Hoon Shin and Dae-Cheol Ko
Materials 2024, 17(17), 4291; https://doi.org/10.3390/ma17174291 - 30 Aug 2024
Cited by 1 | Viewed by 754
Abstract
Carbon fiber-reinforced plastic (CFRP) is a lightweight material. The automotive industry has focused on producing a steel/CFRP hybrid part to reduce overall weight. After manufacturing, delamination can occur at the interface between the CFRP and steel owing to the hybrid part constituting dissimilar [...] Read more.
Carbon fiber-reinforced plastic (CFRP) is a lightweight material. The automotive industry has focused on producing a steel/CFRP hybrid part to reduce overall weight. After manufacturing, delamination can occur at the interface between the CFRP and steel owing to the hybrid part constituting dissimilar materials. However, most studies have focused only on designing the manufacturing processes for the hybrid part or evaluating the adhesive used at the interface. Therefore, it is necessary to predict the behavior of the interface after demolding the hybrid part. This study aimed to predict the interface behavior of a steel/CFRP hybrid part by considering its forming and cohesive properties. First, double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed to obtain cohesive parameters, such as energy release rate of modes I and II (GI, GII). The experimentally obtained properties were applied to the bonding area of the hybrid part. Subsequently, a forming simulation was performed to obtain the stress of the steel blank in the hybrid part. The stress distribution after forming was utilized as the initial condition for spring-back simulation. Finally, the interface behavior of the hybrid part was predicted by a spring-back simulation. The simulation was conducted using the residual stress of steel outer and the cohesive properties on the interface, without the application of any external forces. The cases of spring-back simulation were divided as delamination occurrence and attached state. The simulation results for prediction of delamination occurrence and bonding showed good agreement in both cases with experimental ones. The proposed method would contribute to expanding the manufacturing of the hybrid part by stamping and reducing the manufacturing cost by prediction of delamination occurrence. Full article
(This article belongs to the Special Issue Advances in Hybrid Structure Manufacturing Technology)
Show Figures

Figure 1

18 pages, 22898 KiB  
Article
Multi-Load Topology Optimization Design for the Structural Safety Maintenance of Low- and Intermediate-Level Radioactive Waste Packaging Containers in the Case of a Collision
by Jeong-In Lee, Sang-Wook Park, Hye-Jin Song, Yong-Jae Cho, Dong-Hwan Kim, Dae-Cheol Ko and Jin-Seok Jang
Materials 2024, 17(16), 4130; https://doi.org/10.3390/ma17164130 - 20 Aug 2024
Viewed by 1053
Abstract
This paper presents an optimized design approach using nonlinear dynamic analysis and finite element methods to ensure the structural integrity of square-shaped containers made from ductile cast iron for intermediate- and low-level radioactive waste packaging. Ductile cast iron, with its spherical graphite structure, [...] Read more.
This paper presents an optimized design approach using nonlinear dynamic analysis and finite element methods to ensure the structural integrity of square-shaped containers made from ductile cast iron for intermediate- and low-level radioactive waste packaging. Ductile cast iron, with its spherical graphite structure, effectively distributes stress throughout the material, leading to a storage capacity increase of approximately 18%. Considering the critical need for containers that maintain integrity under extreme conditions like earthquakes, the design focuses on mitigating stress concentrations at the corners of square structures. Nonlinear dynamic analyses were conducted in five drop directions: three specified by ASTM-D5276 standards and two additional directions to account for different load patterns. Fractures were observed in four out of the five scenarios. For each direction where fractures occurred, equivalent loads causing similar displacement fields were applied to linear static models, which were then used for multi-load topology optimization. Three optimized models were derived, each increasing the volume by 1.4% to 1.6% compared to the original model, and the design that best met the structural integrity requirements during drop scenarios was selected. To further enhance the optimization process, weights were assigned to different load conditions based on numerical analysis results, balancing the impact of maximum stress, average stress, and plastic deformation energy. The final model, with its increased storage capacity and enhanced structural integrity, offers a practical solution for radioactive waste management, overcoming limitations in previous designs by effectively addressing complex load conditions. Full article
(This article belongs to the Special Issue Advances in Hybrid Structure Manufacturing Technology)
Show Figures

Figure 1

19 pages, 6061 KiB  
Article
A Methodological Approach for Motor Selection in Dental Impression Material Dispensers Using Experimental and Image Analysis Techniques
by Ji-Min Hwang, Sang-Wook Park, Ji-Su Jeong, Ji-Wook Kim, Dae-Cheol Ko and Jin-Seok Jang
Materials 2024, 17(7), 1467; https://doi.org/10.3390/ma17071467 - 22 Mar 2024
Viewed by 1041
Abstract
This study presents a methodology to prevent the overdesign of electric dispensers for dental impression materials by analyzing the necessary load and determining the appropriate pressurization speed and drive motor capacity. We derived an equation to calculate the required torque and rotational speed [...] Read more.
This study presents a methodology to prevent the overdesign of electric dispensers for dental impression materials by analyzing the necessary load and determining the appropriate pressurization speed and drive motor capacity. We derived an equation to calculate the required torque and rotational speed of the motor based on the extrusion load and the speed of the impression material. A specialized load measurement system was developed to measure the load necessary to extrude the impression material. Through experiments and image processing, we measured the radius of curvature of the trajectory of the impression material and correlated it with the pressurization speed. Techniques such as position coordinate plotting, curve fitting, and circle fitting were employed to determine the pressurization speed that aligns with the manufacturer’s recommended curvature radius. These findings led to a substantial decrease in the necessary motor torque and rotational speed compared with the current standards. This research provides a systematic approach to sizing drive motors using extrusion load and pressurization speed, aiming to reduce overdesign, power consumption, and the weight and size of the motor and battery, thereby contributing to the development of more efficient and compact dental impression material dispensers. Full article
(This article belongs to the Special Issue Advances in Hybrid Structure Manufacturing Technology)
Show Figures

Figure 1

Back to TopTop