materials-logo

Journal Browser

Journal Browser

Advances in Structure Analysis of Amorphous and Nanocrystalline Materials (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Materials Characterization".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 2590

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
Interests: mechanical alloying; X-ray diffraction; diffuse scattering; RDF; PDF; rietveld refinement; structure determination; residual stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
Interests: materials engineering; amorphous and nanostructured materials; soft magnetic materials; steels; degradable biomaterials; heat treatment; mechanical alloying; powder metallurgy; fracture morphology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

You are cordially invited to publish original scientific articles describing the results of research works or review articles in a Special Issue entitled “Advances in Structure Analysis of Amorphous and Nanocrystalline Materials”.

Amorphous and nanocrystalline materials have unique physical, chemical, and mechanical properties which allow their utilization in numerous and advanced applications. These materials feature in the mainstream of worldwide research in the field of metallic and composite materials. Thus, to better understand the mechanisms occurring in low-order materials, and thus to model and design novel materials more effectively, it is necessary to fully understand and describe the structure of these materials.

The submitted works may therefore concern both innovative engineering materials with modification of their structure and physicochemical properties, as well as original technological solutions and mathematical models which will be helpful in formulating new conclusions. This Special Issue of Materials will be a detailed overview of recent research and development in the field of structure analysis of amorphous and nanocrystalline materials and composites. It is my pleasure to invite you to submit a manuscript for this Special Issue. Full papers, communications, and reviews related to structural analysis are all welcome.

Prof. Dr. Małgorzata Karolus
Prof. Dr. Sabina Lesz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural characterization
  • amorphous phase
  • nanocrystalline structure
  • radial and pair distribution functions
  • Rietveld analysis
  • mechanical alloying
  • melt spinning method
  • calorimetry and stability of amorphous materials
  • glass forming ability
  • crystallization

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2917 KiB  
Article
Equimolar As4S4/Fe3O4 Nanocomposites Fabricated by Dry and Wet Mechanochemistry: Some Insights on the Magnetic–Fluorescent Functionalization of an Old Drug
by Oleh Shpotyuk, Zdenka Lukáčová Bujňáková, Peter Baláž, Andriy Kovalskiy, Małgorzata Sznajder, Jozef Cebulski, Yaroslav Shpotyuk, Pavlo Demchenko and Ihor Syvorotka
Materials 2024, 17(8), 1726; https://doi.org/10.3390/ma17081726 - 10 Apr 2024
Viewed by 419
Abstract
Multifunctional nanocomposites from an equimolar As4S4/Fe3O4 cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer [...] Read more.
Multifunctional nanocomposites from an equimolar As4S4/Fe3O4 cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer 407 acting as a surfactant). As was inferred from the X-ray diffraction analysis, these surfactant-free and surfactant-capped nanocomposites are β-As4S4-bearing nanocrystalline–amorphous substances supplemented by an iso-compositional amorphous phase (a-AsS), both principal constituents (monoclinic β-As4S4 and cubic Fe3O4) being core–shell structured and enriched after wet milling by contamination products (such as nanocrystalline–amorphous zirconia), suppressing their nanocrystalline behavior. The fluorescence and magnetic properties of these nanocomposites are intricate, being tuned by the sizes of the nanoparticles and their interfaces, dependent on storage after nanocomposite fabrication. A specific core–shell arrangement consisted of inner and outer shell interfaces around quantum-confined nm-sized β-As4S4 crystallites hosting a-AsS, and the capping agent is responsible for the blue-cyan fluorescence in as-fabricated Poloxamer capped nanocomposites peaking at ~417 nm and ~442 nm, while fluorescence quenching in one-year-aged nanocomposites is explained in terms of their destroyed core–shell architectures. The magnetic co-functionalization of these nanocomposites is defined by size-extended heterogeneous shells around homogeneous nanocrystalline Fe3O4 cores, composed by an admixture of amorphous phase (a-AsS), nanocrystalline–amorphous zirconia as products of contamination in the wet-milling mode, and surfactant. Full article
Show Figures

Figure 1

16 pages, 3098 KiB  
Article
Optimizing Thermoelectric Performance of Hybrid Crystals Bi2O2Se1−xTex in the Bi2O2X System
by Fan Xie, Zhiyao Ma and Jian Zhou
Materials 2024, 17(7), 1509; https://doi.org/10.3390/ma17071509 - 26 Mar 2024
Viewed by 441
Abstract
In addressing the global need for sustainable energy conversion, this study presents a breakthrough in thermoelectric materials research by optimizing the Bi2O2Se1–xTex system in the Bi2O2Se/Bi2O2Te pseudobinary series. [...] Read more.
In addressing the global need for sustainable energy conversion, this study presents a breakthrough in thermoelectric materials research by optimizing the Bi2O2Se1–xTex system in the Bi2O2Se/Bi2O2Te pseudobinary series. Leveraging the principles of innovative transport mechanisms and defect engineering, we introduce tellurium (Te) doping into Bi2O2Se to enhance its thermoelectric properties synergistically. With the help of various advanced characterization tools such as XRD, SEM, TEM, XPS, FTIR, TGA, LFA, and DSC, combined with relevant resistance and density measurement techniques, we conducted an in-depth exploration of the complex interactions between various factors within thermoelectric materials. We recognize that the balance and synergy of these factors in the thermoelectric conversion process are crucial to achieving efficient energy conversion. Through systematic research, we are committed to revealing the mechanisms of these interactions and providing a solid scientific foundation for the optimal design and performance enhancement of thermoelectric materials. Finally, the advantage coefficient (ZT) of the thermoelectric material has been significantly improved. The crystallographic analysis confirms the formation of a continuous series of mixed crystals with varying Te concentrations, adhering to Vegard’s law and exhibiting significant improvements in electrical and thermal conductivities. The Bi2O2Se1–xTex crystals, particularly the Bi2O2Se0.6Te0.4 composition, demonstrate a peak ZT of 0.86 at 373 K. This achievement aligns with recent advancements in defect-enabled mechanisms and band convergence and sets a new standard for high-performance thermoelectrics. The study’s findings contribute significantly to the ongoing quest for efficient thermal-to-electrical energy conversion, offering a promising avenue for future sustainable energy technologies. Full article
Show Figures

Figure 1

17 pages, 5605 KiB  
Article
Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study
by Jenő Gubicza, Kamilla Mukhtarova and Megumi Kawasaki
Materials 2024, 17(2), 454; https://doi.org/10.3390/ma17020454 - 18 Jan 2024
Cited by 2 | Viewed by 687
Abstract
Experiments were conducted to reveal the nanostructure evolution in additively manufactured (AMed) 316L stainless steel due to severe plastic deformation (SPD). SPD-processing was carried out using the high-pressure torsion (HPT) technique. HPT was performed on four different states of 316L: the as-built material [...] Read more.
Experiments were conducted to reveal the nanostructure evolution in additively manufactured (AMed) 316L stainless steel due to severe plastic deformation (SPD). SPD-processing was carried out using the high-pressure torsion (HPT) technique. HPT was performed on four different states of 316L: the as-built material and specimens heat-treated at 400, 800 and 1100 °C after AM-processing. The motivation for the extension of this research to the annealed states is that heat treatment is a usual step after 3D printing in order to reduce the internal stresses formed during AM-processing. The nanostructure was studied by X-ray line profile analysis (XLPA), which was completed by crystallographic texture measurements. It was found that the as-built 316L sample contained a considerable density of dislocations (1015 m−2), which decreased to about half the original density due to the heat treatments at 800 and 1100 °C. The hardness varied accordingly during annealing. Despite this difference caused by annealing, HPT processing led to a similar evolution of the microstructure by increasing the strain for the samples with and without annealing. The saturation values of the crystallite size, dislocation density and twin fault probability were about 20 nm, 3 × 1016 m−2 and 3%, respectively, while the maximum achievable hardness was ~6000 MPa. The initial <100> and <110> textures for the as-built and the annealed samples were changed to <111> due to HPT processing. Full article
Show Figures

Figure 1

13 pages, 2694 KiB  
Article
Magnetic and Electrical Properties of CuCr2Se4 Nanoparticles
by Ewa Malicka, Tadeusz Groń, Adrian Gudwański, Bogdan Sawicki, Monika Oboz, Małgorzata Karolus and Zenon Kukuła
Materials 2023, 16(23), 7495; https://doi.org/10.3390/ma16237495 - 04 Dec 2023
Viewed by 687
Abstract
CuCr2Se4 nanoparticles were obtained by the high-energy ball milling of CuCr2Se4 single crystals, which had a size of approximately 32 nm after 5 h of milling. Structural, magnetic, and electrical studies have shown that a reduction in [...] Read more.
CuCr2Se4 nanoparticles were obtained by the high-energy ball milling of CuCr2Se4 single crystals, which had a size of approximately 32 nm after 5 h of milling. Structural, magnetic, and electrical studies have shown that a reduction in CuCr2Se4 single crystals to the nanosize leads to (1) a weakening of ferromagnetic interactions, both long and short range, (2) a lack of saturation of magnetization at 5 K and 70 kOe, (3) a change in the nature of electrical conductivity from metallic to semiconductor, and (4) a reduction in the thermoelectric power factor S2σ by an order of magnitude of 400 K. The above results were considered in terms of the parameters of the band model, derived from the high-temperature expansion of magnetic susceptibility and from the diffusive component of thermoelectric power. Theoretical calculations showed a significant weakening of both the superexchange and double exchange mechanisms, a reduction in the [Cr3+,Cr4+] band width from 0.76 to 0.19 eV, and comparable values of the Fermi energy and the activation energy (0.46 eV) in the intrinsic region of electrical conductivity. The main advantage of high-energy ball milling is the ability to modify the physicochemical properties of already existing compounds for desired applications. Full article
Show Figures

Figure 1

Back to TopTop