materials-logo

Journal Browser

Journal Browser

Complementary Use of Industrial Solid Wastes to Produce Green Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Green Materials".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 592

Special Issue Editor

School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Interests: industrial solid waste recycling

Special Issue Information

Dear Colleagues,

With the rapid development of social and economic activities, the output of solid waste has been increasing year by year, generating tremendous pressure on the environment. How to effectively handle and utilize solid waste and achieve the recycling of resources has become an urgent issue in the field of environmental protection. In light of this, we are pleased to invite you to submit your related research work to this Special Issue of Materials.

This Special Issue aims to seek green and low-carbon system solutions for solid waste resourceization and pollution control, as well as new ideas, technologies, and research progress from the perspective of enhancing the safety disposal and resource recycling of solid waste.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Low-carbon pollution control of hazardous solid wastes;
  • Waste-to-energy utilization for organic wastes;
  • Low-carbon techniques for critical metal recovery from city mines;
  • Green eco-materialization of solid waste;
  • Artificial Intelligence for risk identification and pollution control for solid waste;
  • Low-carbon utilization of mineral wastes. 

I look forward to receiving your contributions.

Dr. Jingwei Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photovoltaic waste
  • lithium ion battery recycling
  • mineral recycling
  • semiconductor material recycling
  • building solid waste recycling
  • city mines
  • hazardous solid wastes
  • organic wastes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 5197 KiB  
Article
New Insight into a Green Process for Iron Manganese Ore Utilization: Efficient Separation of Manganese and Iron Based on Phase Reconstruction by Vanadium Recycle
by Jing Wen, Xinyu Liu, Shuai Yuan, Tangxia Yu, Lan Zhang, Tao Jiang and Jingwei Li
Materials 2025, 18(4), 844; https://doi.org/10.3390/ma18040844 - 14 Feb 2025
Viewed by 407
Abstract
The difficulty of separating iron and manganese is a bottleneck issue in the traditional utilization process of iron manganese ore (Fe-Mn ore). In this work, ammonium polyvanadate (APV), an intermediate product in the vanadium industry, was introduced innovatively to convert the manganese-containing phase [...] Read more.
The difficulty of separating iron and manganese is a bottleneck issue in the traditional utilization process of iron manganese ore (Fe-Mn ore). In this work, ammonium polyvanadate (APV), an intermediate product in the vanadium industry, was introduced innovatively to convert the manganese-containing phase in Fe-Mn ore into manganese pyrovanadate (Mn2V2O7) and iron and manganese were then separated efficiently through the acid leaching process. The migration of manganese, iron, and vanadium were systematically studied through XRD, SEM, and leaching experiments. Results show that during the mixed roasting process of Fe-Mn ore and APV, V2O5, the decomposition product of APV, reacts with the decomposition product of manganese minerals in Fe-Mn ore, Mn2O3, to produce the target product, acid-soluble Mn2V2O7. Iron and silicon exist in the form of Fe2O3 and SiO2 like in Fe-Mn ore. After the two-step leaching process of the sample roasted at 850 °C with n(MnO2)/n(V2O5) of 2.25, the leaching ratios of manganese, iron and vanadium are 84.57%, 0.046%, and 4.68%, respectively, achieving the efficient separation of manganese with iron and vanadium. MnCO3 obtained by carbonization and precipitation from the manganese-containing leaching solution can be used as an intermediate product of manganese metallurgy or manganese chemical industry. APV obtained by alkaline leaching and precipitation from the vanadium- and iron-containing tailing can be recycled into the roasting system as the roasting additive. The TFe content in the iron-containing tailing reaches 57.21 wt.%, which meets the requirement of iron concentrate. More than 99 wt.% of vanadium from the additive APV can be recovered and recycled back into the Fe-Mn ore utilization process by APV recycling and wastewater recycling, making the Fe-Mn ore utilization with APV roasting a green process. Full article
Show Figures

Figure 1

Back to TopTop