Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussions
3.1. Structural Analysis
3.2. Microscopic Modification Observed from AFM Micrographs
3.3. Influence of Irradiation on Surface Oxidation States
3.4. Irradiation-Induced Changes in Magnetism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maier, R.; Cohn, J.L.; Neumeier, J.J.; Bendersky, L.A. Ferroelectricity and ferrimagnetism in iron-doped BaTiO3. Appl. Phys. Lett. 2001, 78, 2536–2538. [Google Scholar] [CrossRef]
- Ueda, K.; Tabata, H.; Kawai, T. Coexistence of ferroelectricity and ferromagnetism in BiFeO3–BaTiO3 thin films at room temperature. Appl. Phys. Lett. 1999, 75, 555–557. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A.; Chatterjee, R. Enhanced magnetoelectric coefficient (α) in the modified BiFeO3–PbTiO3 system with large La substitution. Appl. Phys. Lett. 2008, 93, 22902. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, A.; Singh, L.; Mishra, S.K.; Babu, P.D.; Asokan, K.; Kumar, S.; Chen, C.L.; Yang, K.S.; Wei, D.H. Structural, magnetic and electronic properties of iron doped barium strontium titanate. RSC Adv. 2016, 6, 112363–112369. [Google Scholar] [CrossRef]
- Samantaray, C.B.; Dhar, A.; Bhattacharya, D.; Mukherjee, M.L.; Ray, S.K. Effect of post-deposition annealing on microstructural and optical properties of barium strontium titanate thin films deposited by rf magnetron sputtering. J. Mater. Sci. Mater. Electron. 2001, 12, 365–370. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Loezos, J.M.; Roth, R.S. Magnetic dielectric oxides: Subsolidus phase relations in the bao: Fe2O3: Tio2system. J. Solid State Chem. 1996, 121, 38–50. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, L.; Bi, C.; Qiu, H.; Zhao, X.; Yang, L.; Rafique, M.Y. Structural and multiferroic properties of Fe-doped Ba0. 5Sr0. 5TiO3 solids. J. Magn. Magn. Mater. 2013, 325, 24–28. [Google Scholar] [CrossRef]
- Maier, R.; Cohn, J.L. Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3: Influence of iron on physical properties. J. Appl. Phys. 2002, 92, 5429–5436. [Google Scholar] [CrossRef]
- Shukla, D.K.; Kumar, R.; Mollah, S.; Choudhary, R.J.; Thakur, P.; Sharma, S.K.; Brookes, N.B.; Knobel, M. Swift heavy ion irradiation induced magnetism in magnetically frustrated BiMn2O5 thin films. Phys. Rev. B 2010, 82, 174432. [Google Scholar] [CrossRef]
- Toulemonde, M.; Dufour, C.; Paumier, E. Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 1992, 46, 14362. [Google Scholar] [CrossRef]
- Toulemonde, M. Nanometric phase transformation of oxide materials under GeV energy heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. B 1999, 156, 1–11. [Google Scholar] [CrossRef]
- Das, A.; Singh, F. Electronic excitation induced anomalous band gap enhancement in NixCd1-xO thin films. Vacuum 2017, 146, 287–296. [Google Scholar] [CrossRef]
- Sharma, M.; Gaur, A.; Quamara, J.K. Swift heavy ions irradiated PVDF/BaTiO3 film as a separator for supercapacitors. Solid State Ion. 2020, 352, 115342. [Google Scholar] [CrossRef]
- Norgren, B.S.; Somers, M.A.J.; De Wit, J.H.W. Application of tougaard background subtraction to XPS spectra of passivated Fe–17 Cr. Surf. Interface Anal. 1994, 21, 378–381. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, D.; Das, A.; Asokan, K.; Chen, C.-L.; Mishra, I.B.; Ahuja, R. Spin and valence variation in cobalt doped barium strontium titanate ceramics. Phys. Chem. Chem. Phys. 2022, 24, 19865–19881. [Google Scholar] [CrossRef]
- Kang, P.-S.; Kim, K.-T.; Kim, D.-P.; Kim, C.-I.; Efremov, A.M. Dry etching characteristics of (Ba0.6, Sr0.4) TiO3 thin films in high density CF4/Ar plasma. Surf. Coat. Technol. 2003, 171, 273–279. [Google Scholar] [CrossRef]
- Craciun, V.; Singh, R.K. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Appl. Phys. Lett. 2000, 76, 1932–1934. [Google Scholar] [CrossRef]
- Gao, H.; Tian, J.; Tan, F.; Zheng, H.; Zhang, W. Tuning optical and magnetic properties of nanocrystalline BaTiO3 films by Fe doping. Appl. Phys. A 2018, 124, 835. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179. [Google Scholar] [CrossRef]
- Wei, X.K.; Su, Y.T.; Sui, Y.; Zhang, Q.H.; Yao, Y.; Jin, C.Q.; Yu, R.C. Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. J. Appl. Phys. 2011, 110, 114112. [Google Scholar] [CrossRef]
- Qin, S.; Liu, D.; Zuo, Z.; Sang, Y.; Zhang, X.; Zheng, F.; Liu, H.; Xu, X.-G. UV-irradiation-enhanced ferromagnetism in BaTiO3. J. Phys. Chem. Lett. 2010, 1, 238–241. [Google Scholar] [CrossRef]
- Lian, J.; Wang, L.M.; Wang, S.X.; Chen, J.; Boatner, L.A.; Ewing, R.C. Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors. Phys. Rev. Lett. 2001, 87, 145901. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, W.; Wang, S.; Ewing, R.C. Comparison of ion-beam irradiation effects in X2YO4 compounds. J. Am. Ceram. Soc. 1999, 82, 3321–3329. [Google Scholar] [CrossRef]
- Barbu, A.; Dunlop, A.; Lesueur, D.; Averback, R.S. Latent tracks do exist in metallic materials. Europhys. Lett. 1991, 15, 37. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Li, Y.; Fang, L.; Dammak, H.; Fan, H.; Thi, M.P. Orthorhombic to tetragonal structural phase transition in Na0.5K0.5NbO3-based ceramics. Mater. Lett. 2012, 68, 300–302. [Google Scholar] [CrossRef]
- Szenes, G. General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys. Rev. B 1995, 51, 8026. [Google Scholar] [CrossRef]
- Audouard, A.; Balanzat, E.; Bouffard, S.; Jousset, J.C.; Chamberod, A.; Dunlop, A.; Lesueur, D.; Fuchs, G.; Spohr, R.; Vetter, J. Evidence for amorphization of a metallic alloy by ion electronic energy loss. Phys. Rev. Lett. 1990, 65, 875. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, D.; Das, A.; Singh, S.; Asokan, K.; Singh, L.; Mishra, I.B.; Ahuja, R. Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics. J. Mater. Sci. Mater. Electron. 2021, 32, 24910–24929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.; Bittencourt, C. Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity. Materials 2025, 18, 2534. https://doi.org/10.3390/ma18112534
Das A, Bittencourt C. Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity. Materials. 2025; 18(11):2534. https://doi.org/10.3390/ma18112534
Chicago/Turabian StyleDas, Arkaprava, and Carla Bittencourt. 2025. "Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity" Materials 18, no. 11: 2534. https://doi.org/10.3390/ma18112534
APA StyleDas, A., & Bittencourt, C. (2025). Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity. Materials, 18(11), 2534. https://doi.org/10.3390/ma18112534