Special Issue "Graphene Oxide Composites"

A special issue of Journal of Composites Science (ISSN 2504-477X).

Deadline for manuscript submissions: 31 July 2021.

Special Issue Editor

Prof. Jian-Zhang Chen
E-Mail Website
Guest Editor
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
Interests: plasma processing; atmospheric pressure plasma; dielectric barrier discharge; flexible electronics; solar cells; supercapacitors; metal oxides; wide-bandgap materials
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Graphene shows great promise for applications in many fields. Graphene and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), have been used as components for composite materials. GO, an important derivative of graphene, is amphiphile with hydrophilic edges and a hydrophobic basal plane. Oxygen-containing functional groups not only improve the dispersion of GO in aqueous solution but also serve as the bonding sites for heterogeneous materials. Therefore, GO is considered a promising component for composite materials.

GO composites synthesized by various methods can be used for solar cells, supercapacitors, sensors, fuel cells, batteries, etc. The versatile applications and synthesis methods of GO composites have opened up a whole new direction for research and development. In this Special Issue, papers related to composites made with GO, graphene, and rGO are all invited.

Prof. Jian-Zhang Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Graphene
  • Reduced graphene oxide
  • Graphene oxide
  • Polymer
  • Metal
  • Ceramics
  • Carbon-based material
  • Carbon nanotube
  • Composite
  • Supercapacitor
  • Solar cell
  • Fuel cell
  • Redox flow cell
  • Battery
  • Solar fuel
  • Flexible electronics
  • Synthesis
  • Plasma

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Effect of Graphene Oxide as a Reinforcement in a Bio-Epoxy Composite
J. Compos. Sci. 2021, 5(3), 91; https://doi.org/10.3390/jcs5030091 - 23 Mar 2021
Cited by 1 | Viewed by 527
Abstract
Graphene oxide (GO) has gained interest within the materials research community. The presence of functional groups on GO offers exceptional bonding capabilities and improved performance in lightweight polymer composites. A literature review on the tensile and flexural mechanical properties of synthetic epoxy/GO composites [...] Read more.
Graphene oxide (GO) has gained interest within the materials research community. The presence of functional groups on GO offers exceptional bonding capabilities and improved performance in lightweight polymer composites. A literature review on the tensile and flexural mechanical properties of synthetic epoxy/GO composites was conducted that showed differences from one study to another, which may be attributed to the oxidation level of the prepared GO. Herein, GO was synthesized from oxidation of graphite flakes using the modified Hummers method, while bio-epoxy/GO composites (0.1, 0.2, 0.3 and 0.6 wt.% GO) were prepared using a solution mixing route. The GO was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM) analysis. The thermal properties of composites were assessed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). FTIR results confirmed oxidation of graphite was successful. SEM showed differences in fractured surfaces, which implies that GO modified the bio-epoxy polymer to some extent. Addition of 0.3 wt.% GO filler was determined to be an optimum amount as it enhanced the tensile strength, tensile modulus, flexural strength and flexural modulus by 23, 35, 17 and 31%, respectively, compared to pure bio-epoxy. Improvements in strength were achieved with considerably lower loadings than traditional fillers. Compared to the bio-epoxy, the 0.6 wt.% GO composite had the highest thermal stability and a slightly higher (positive) glass transition temperature (Tg) was increased by 3.5 °C, relative to the pristine bio-epoxy (0 wt.% GO). Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

Article
Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites
J. Compos. Sci. 2021, 5(2), 52; https://doi.org/10.3390/jcs5020052 - 08 Feb 2021
Viewed by 547
Abstract
Polypropylene has been widely used as dielectric material in organic thin-film capacitors due to their high breakdown strength, low dielectric loss and self-healing capability. However, polypropylene’s energy density is relatively low. Increasing the energy density of polypropylene by adding materials with a high [...] Read more.
Polypropylene has been widely used as dielectric material in organic thin-film capacitors due to their high breakdown strength, low dielectric loss and self-healing capability. However, polypropylene’s energy density is relatively low. Increasing the energy density of polypropylene by adding materials with a high dielectric constant is commonly used. Still, it often leads to an increase in dielectric loss, lower dielectric strength and other shortcomings. In this study, a thin 2D platelet of mica/graphene oxide composite material was made from exfoliated mica as a substrate and attached by graphene oxide. The mica/graphene oxide platelets were added to polypropylene to make a plastic dielectric composite. The non-conductive flat inorganic additive can increase the dielectric constant and dielectric strength of the composite without increasing dielectric loss. The tiny mica/graphene oxide platelets can significantly improve the dielectric properties of polypropylene. The results show that by adding a small amount (less than 1 wt%) mica/graphene oxide, the relative dielectric constant of polypropylene can increase to more than 3.7 without causing an increase in dielectric loss and the dielectric strength of polypropylene can also enhance. Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

Article
Nanocomposite of Graphene Oxide Encapsulated in Polymethylmethacrylate (PMMA): Pre-Modification, Synthesis, and Latex Stability
J. Compos. Sci. 2020, 4(3), 118; https://doi.org/10.3390/jcs4030118 - 17 Aug 2020
Cited by 1 | Viewed by 742
Abstract
The compatibility of graphene oxide with its dispersion medium (polymer) plays a critical role in the formation of nanocomposite materials with significant property improvements. Environmentally friendly miniemulsion polymerization, which allows a formation of nanoencapsulation in an aqueous phase and high molecular weight polymer/composite [...] Read more.
The compatibility of graphene oxide with its dispersion medium (polymer) plays a critical role in the formation of nanocomposite materials with significant property improvements. Environmentally friendly miniemulsion polymerization, which allows a formation of nanoencapsulation in an aqueous phase and high molecular weight polymer/composite production is one promising method. In this study, we screened a series of amphiphilic modifiers and found that the quaternary ammonium (ar-vinyl benzyl) trimethyl ammonium chloride (VBTAC) pending carbon double bonds could effectively modify the graphene oxide (GO) to be compatible with the organophilic monomer. After that, free radical miniemulsion polymerization successfully synthesized stable latex of exfoliated poly (methyl methacrylate) (PMMA)/ GO nanocomposite. The final latex had an extended storage life and a relatively uniform particle size distribution. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) analysis of this latex and its films indicated successful encapsulation of exfoliated nano-dimensional graphene oxide inside a polymer matrix. Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

Article
A Commercial Carbonaceous Anode with a-Si Layers by Plasma Enhanced Chemical Vapor Deposition for Lithium Ion Batteries
J. Compos. Sci. 2020, 4(2), 72; https://doi.org/10.3390/jcs4020072 - 11 Jun 2020
Viewed by 651
Abstract
In this study, we propose a mass production-able and low-cost method to fabricate the anodes of Li-ion battery. Carbonaceous anodes, integrated with thin amorphous silicon layers by plasma enhanced chemical vapor deposition, can improve the performance of specific capacity and coulombic efficiency for [...] Read more.
In this study, we propose a mass production-able and low-cost method to fabricate the anodes of Li-ion battery. Carbonaceous anodes, integrated with thin amorphous silicon layers by plasma enhanced chemical vapor deposition, can improve the performance of specific capacity and coulombic efficiency for Li-ion battery. Three different thicknesses of a-Si layers (320, 640, and 960 nm), less than 0.1 wt% of anode electrode, were deposited on carbonaceous electrodes at low temperature 200 °C. Around 30 mg of a-Si by plasma enhanced chemical vapor deposition (PECVD) can improve the specific capacity ~42%, and keep coulombic efficiency of the half Li-ion cells higher than 85% after first cycle charge-discharge test. For the thirty cyclic performance and rate capability, capacitance retention can maintain above 96%. The thicker a-Si layers on carbon anodes, the better electrochemical performance of anodes with silicon-carbon composites we get. The traditional carbonaceous electrodes can be deposited a-Si layers easily by plasma enhanced chemical vapor deposition, which is a method with high potential for industrialization. Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

Article
Photocatalytic Degradation of Organic Micropollutants in Water by Zr-MOF/GO Composites
J. Compos. Sci. 2020, 4(2), 54; https://doi.org/10.3390/jcs4020054 - 12 May 2020
Cited by 5 | Viewed by 1292
Abstract
Nanocomposites of UiO-66 and graphene oxide (UiO-66_GO) were prepared with different GO contents by a one-step hydrothermal method, and their photocatalytic activities for the degradation of carbamazepine (CBZ) were investigated under ranges of GO loading, catalyst dose, initial pollutant concentration, and solution pH. [...] Read more.
Nanocomposites of UiO-66 and graphene oxide (UiO-66_GO) were prepared with different GO contents by a one-step hydrothermal method, and their photocatalytic activities for the degradation of carbamazepine (CBZ) were investigated under ranges of GO loading, catalyst dose, initial pollutant concentration, and solution pH. The UiO-66_GO nanocomposites showed photocatalytic rate constant up to 0.0136 min−1 for CBZ degradation and its high overall removal efficiency (>90%) in 2 h. The photocatalytic rate constant over the UiO-66_GO nanocomposite was about 2.8 and 1.7 times higher than those over pristine GO and UiO-66, respectively. The enhancement of photocatalytic activity by GO was attributed to increased surface area and porosity, improved light absorption, and narrowed band gap. The composite also showed substantial recyclability and stability over five consecutive cycles of photocatalytic degradation. The experimental results indicated that O2●− and OH are the responsible radicals for photocatalytic degradation, which helped us propose a photocatalytic mechanism for the enhanced CBZ photodegradation. This work provides a reference for the development of GO-based composite photocatalysts and expands the application of UiO-66 as a photocatalyst for the degradation of persistent micropollutants in water. Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

Back to TopTop