Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the GO/Zn (OAc)2/PDI Hybrid Materials
2.3. Synthesis of the GO/PDI Composites
2.4. Characterization of Perylene/GO Hybrid Materials
2.4.1. UV-Vis and Fluorescence Spectroscopy
2.4.2. Optical and Fluorescence Microscopy
2.4.3. Raman Spectroscopy
2.4.4. X-ray Powder Diffraction (XRD)
2.4.5. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX)
2.4.6. BET Nitrogen Adsorption/Desorption Measurements
2.4.7. Thermogravimetric Analysis (TGA)
2.4.8. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass-Spectrometry
2.5. Photodegradation of 1,5-Dihydroxynaphthalene
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Hybrid-Assisted Photodegradation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing Impacts of Land Use on Biodiversity and Carbon Sequestration Driven by Population and Economic Growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Chen, P.; Liu, F.; Chen, S.; Guo, J.K.; Shen, S.; Chen, L.; Au, C.T.; Yin, S.F. A Novel and Efficient Route for Aryl Ketones Generation over Co3O4/Ag@C3N4 Photocatalyst. Chem. Eng. Sci. 2019, 207, 271–279. [Google Scholar] [CrossRef]
- Han, L.; Jing, F.; Zhang, J.; Luo, X.Z.; Zhong, Y.L.; Wang, K.; Zang, S.H.; Teng, D.H.; Liu, Y.; Chen, J.; et al. Environment Friendly and Remarkably Efficient Photocatalytic Hydrogen Evolution Based on Metal Organic Framework Derived Hexagonal/Cubic In2O3 Phase-Junction. Appl. Catal. B Environ. 2021, 282, 119602. [Google Scholar] [CrossRef]
- Khare, P.; Singh, A.; Verma, S.; Bhati, A.; Sonker, A.K.; Tripathi, K.M.; Sonkar, S.K. Sunlight-Induced Selective Photocatalytic Degradation of Methylene Blue in Bacterial Culture by Pollutant Soot Derived Nontoxic Graphene Nanosheets. ACS Sustain. Chem. Eng. 2018, 6, 579–589. [Google Scholar] [CrossRef]
- Biancullo, F.; Moreira, N.F.F.; Ribeiro, A.R.; Manaia, C.M.; Faria, J.L.; Nunes, O.C.; Castro-Silva, S.M.; Silva, A.M.T. Heterogeneous Photocatalysis Using UVA-LEDs for the Removal of Antibiotics and Antibiotic Resistant Bacteria from Urban Wastewater Treatment Plant Effluents. Chem. Eng. J. 2019, 367, 304–313. [Google Scholar] [CrossRef]
- Das, S.; Ray, S.; Ghosh, A.B.; Samanta, P.K.; Samanta, S.; Adhikary, B.; Biswas, P. Visible Light Driven Amide Synthesis in Water at Room Temperature from Thioacid and Amine Using CdS Nanoparticles as Heterogeneous Photocatalyst. Appl. Organomet. Chem. 2018, 32, e4199. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Chen, X.L.; Liu, Y.; Shi, T.; Peng, Y.; Qu, L.; Yu, B. Recyclable Cu@C3N4-Catalyzed Hydroxylation of Aryl Boronic Acids in Water under Visible Light: Synthesis of Phenols under Ambient Conditions and Room Temperature. ACS Sustain. Chem. Eng. 2020, 8, 2682–2687. [Google Scholar] [CrossRef]
- Colmenares, J.C. Heterogeneous Photocatalysis; Colmenares, J.C., Xu, Y.-J., Eds.; Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-48717-4. [Google Scholar]
- Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; et al. Facile Synthesis of Ag NPs@ MIL-100(Fe)/ Guar Gum Hybrid Hydrogel as a Versatile Photocatalyst for Wastewater Remediation: Photocatalytic Degradation, Water/Oil Separation and Bacterial Inactivation. Carbohydr. Polym. 2020, 230, 115642. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, H.; Janssen, K.P.F.; Solís-Fernández, G.; Wang, Y.; Tan, C.Y.X.; Jonckheere, D.; Debroye, E.; Long, J.; Hendrix, J.; et al. Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic-Inorganic Perovskite Materials. ACS Energy Lett. 2018, 3, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Etienne, T.; Pastore, M. Charge Separation: From the Topology of Molecular Electronic Transitions to the Dye/Semiconductor Interfacial Energetics and Kinetics. In Dye-Sensitized Solar Cells: Mathematical Modelling, and Materials Design and Optimization; Academic Press: Cambridge, MA, USA, 2019; pp. 121–170. ISBN 9780128145425. [Google Scholar]
- Harmer, R.; Fan, H.; Lloyd, K.; Doble, S.; Avenoso, J.; Yan, H.; Rego, L.G.C.; Gundlach, L.; Galoppini, E. Synthesis and Properties of Perylene-Bridge-Anchor Chromophoric Compounds. J. Phys. Chem. A 2020, 124, 6330–6343. [Google Scholar] [CrossRef]
- Liras, M.; Barawi, M.; De La Peña O’Shea, V.A. Hybrid Materials Based on Conjugated Polymers and Inorganic Semiconductors as Photocatalysts: From Environmental to Energy Applications. Chem. Soc. Rev. 2019, 48, 5454–5487. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Chen, Y.; Zhou, D.; Zhang, H.; Liu, S.; Amal, R.; Sharma, N.; Glushenkov, A.M. Expanding the Applications of the Ilmenite Mineral to the Preparation of Nanostructures: TiO2 Nanorods and Their Photocatalytic Properties in the Degradation of Oxalic Acid. Chem. A Eur. J. 2013, 19, 1091–1096. [Google Scholar] [CrossRef]
- Guarisco, C.; Palmisano, G.; Calogero, G.; Ciriminna, R.; Di Marco, G.; Loddo, V.; Pagliaro, M.; Parrino, F. Visible-Light Driven Oxidation of Gaseous Aliphatic Alcohols to the Corresponding Carbonyls via TiO2 Sensitized by a Perylene Derivative. Environ. Sci. Pollut. Res. 2014, 21, 11135–11141. [Google Scholar] [CrossRef] [PubMed]
- Mele, G.; Del Sole, R.; Vasapollo, G.; García-López, E.; Palmisano, L.; Jun, L.; Słota, R.; Dyrda, G. TiO2-Based Photocatalysts Impregnated with Metallo-Porphyrins Employed for Degradation of 4-Nitrophenol in Aqueous Solutions: Role of Metal and Macrocycle. Res. Chem. Intermed. 2007, 33, 433–448. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Cui, X.; Liang, C.; Xing, G.; Duan, Q. Construction of a Recyclable Dual-Responsive TiO2-Based Photocatalyst Modified with ZnIn2S4 Nanosheets and Zinc Phthalocyanine for Cr(VI) Reduction under Visible Light. Chem. Eng. J. 2021, 417, 129332. [Google Scholar] [CrossRef]
- Dutta, V.; Singh, P.; Shandilya, P.; Sharma, S.; Raizada, P.; Saini, A.K.; Gupta, V.K.; Hosseini-Bandegharaei, A.; Agarwal, S.; Rahmani-Sani, A. Review on Advances in Photocatalytic Water Disinfection Utilizing Graphene and Graphene Derivatives-Based Nanocomposites. J. Environ. Chem. Eng. 2019, 7, 103132. [Google Scholar] [CrossRef]
- Al Kausor, M.; Chakrabortty, D. Graphene Oxide Based Semiconductor Photocatalysts for Degradation of Organic Dye in Waste Water: A Review on Fabrication, Performance Enhancement and Challenges. Inorg. Chem. Commun. 2021, 129, 108630. [Google Scholar] [CrossRef]
- Mondal, A.; Prabhakaran, A.; Gupta, S.; Subramanian, V.R. Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope. ACS Omega 2021, 6, 8734–8743. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, T.; Liu, J.; Hu, L.; Nie, Q.; Tan, Z.; Yu, H. Enhanced Solar Photocatalytic Degradation of Nitric Oxide Using Graphene Quantum Dots/Bismuth Tungstate Composite Catalysts. Chem. Eng. J. 2021, 420, 129595. [Google Scholar] [CrossRef]
- Qiang, Z.; Liu, X.; Li, F.; Li, T.; Zhang, M.; Singh, H.; Huttula, M.; Cao, W. Iodine Doped Z-Scheme Bi2O2CO3/Bi2WO6 Photocatalysts: Facile Synthesis, Efficient Visible Light Photocatalysis, and Photocatalytic Mechanism. Chem. Eng. J. 2021, 403, 126327. [Google Scholar] [CrossRef]
- Liu, C.; Kong, C.; Zhang, F.J.; Kai, C.M.; Cai, W.Q.; Sun, X.Y.; Oh, W.C. Research Progress of Defective MoS2 for Photocatalytic Hydrogen Evolution. J. Korean Ceram. Soc. 2021, 58, 135–147. [Google Scholar] [CrossRef]
- Javaid, A.; Latif, S.; Imran, M.; Hussain, N.; Bilal, M.; Iqbal, H.M.N. MXene-Based Hybrid Composites as Photocatalyst for the Mitigation of Pharmaceuticals. Chemosphere 2022, 291, 133062. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, F.; Li, Z.; Liu, Z.; Yang, W.; Zhang, Y.; Fan, H.; Yang, H.Y. Design Strategy for MXene and Metal Chalcogenides/Oxides Hybrids for Supercapacitors, Secondary Batteries and Electro/Photocatalysis. Coord. Chem. Rev. 2022, 464, 214544. [Google Scholar] [CrossRef]
- Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Adv. Sci. 2020, 7, 2000058. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef] [PubMed]
- Volfkovich, Y.M.; Sosenkin, V.E.; Maiorova, N.A.; Rychagov, A.Y.; Baskakov, S.A.; Kabachkov, E.N.; Korepanov, V.I.; Dremova, N.N.; Baskakova, Y.V.; Shulga, Y.M. Graphene-Based Aerogels Possessing Superhydrophilic and Superhydrophobic Properties and Their Application for Electroreduction of Molecular Oxygen. Colloid J. 2021, 83, 284–293. [Google Scholar] [CrossRef]
- Jiang, B.P.; Hu, L.F.; Wang, D.J.; Ji, S.C.; Shen, X.C.; Liang, H. Graphene Loading Water-Soluble Phthalocyanine for Dual-Modality Photothermal/Photodynamic Therapy via a One-Step Method. J. Mater. Chem. B 2014, 2, 7141–7148. [Google Scholar] [CrossRef]
- Gacka, E.; Wojcik, A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobiński, L.; Kubas, A.; Hug, G.L.; Marciniak, B.; Lewandowska-Andralojc, A. Noncovalent Porphyrin-Graphene Oxide Nanohybrids: The PH-Dependent Behavior. J. Phys. Chem. C 2019, 123, 3368–3380. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, L.; Su, D.; Sun, C.; Chen, M.; Goh, K.; Chen, Y. Non-Covalent Synthesis of Thermo-Responsive Graphene Oxide-Perylene Bisimides-Containing Poly(N-Isopropylacrylamide) Hybrid for Organic Pigment Removal. J. Colloid Interface Sci. 2014, 430, 121–128. [Google Scholar] [CrossRef]
- Mondal, B.; Bera, R.; Nayak, S.K.; Patra, A. Graphene Induced Porphyrin Nano-Aggregates for Efficient Electron Transfer and Photocurrent Generation. J. Mater. Chem. C 2016, 4, 6027–6036. [Google Scholar] [CrossRef]
- Navalón, S.; Herance, J.R.; Álvaro, M.; García, H. Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chem. A Eur. J. 2017, 23, 15244–15275. [Google Scholar] [CrossRef] [PubMed]
- Bottari, G.; Ángeles Herranz, M.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D.M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical Functionalization and Characterization of Graphene-Based Materials. Chem. Soc. Rev. 2017, 46, 4464–4500. [Google Scholar] [CrossRef] [Green Version]
- Nugmanova, A.G.; Kalinina, M.A. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. Colloid J. 2021, 83, 614–626. [Google Scholar] [CrossRef]
- Nugmanova, A.G.; Safonova, E.A.; Baranchikov, A.E.; Tameev, A.R.; Shkolin, A.V.; Mitrofanov, A.A.; Eliseev, A.A.; Meshkov, I.N.; Kalinina, M.A. Interfacial Self-Assembly of Porphyrin-Based SURMOF/Graphene Oxide Hybrids with Tunable Pore Size: An Approach toward Size-Selective Ambivalent Heterogeneous Photocatalysts. Appl. Surf. Sci. 2022, 579, 152080. [Google Scholar] [CrossRef]
- Gupta, R.K.; Sudhakar, A.A. Perylene-Based Liquid Crystals as Materials for Organic Electronics Applications. Langmuir 2019, 35, 2455–2479. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.L.; Liu, D. Recent Developments of Perylene Diimide (PDI) Supramolecular Photocatalysts: A Review. J. Photochem. Photobiol. C Photochem. Rev. 2021, 48, 100436. [Google Scholar] [CrossRef]
- Zvyagina, A.I.; Melnikova, E.K.; Averin, A.A.; Baranchikov, A.E.; Tameev, A.R.; Malov, V.V.; Ezhov, A.A.; Grishanov, D.A.; Gun, J.; Ermakova, E.V.; et al. A Facile Approach to Fabricating Ultrathin Layers of Reduced Graphene Oxide on Planar Solids. Carbon 2018, 134, 62–70. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, Y.; Xu, H.; Hu, Y.; Zhang, L.; Song, G.; Yao, Z. Rapid and Visual Detection of Protamine Based on Ionic Self-Assembly of a Water Soluble Perylene Diimide Derivative. Dye. Pigment. 2020, 180, 108456. [Google Scholar] [CrossRef]
- Datar, A.; Balakrishnan, K.; Zang, L. One-Dimensional Self-Assembly of a Water Soluble Perylene Diimide Molecule by PH Triggered Hydrogelation. Chem. Commun. 2013, 49, 6894–6896. [Google Scholar] [CrossRef]
- Zvyagina, A.I.; Shiryaev, A.A.; Baranchikov, A.E.; Chernyshev, V.V.; Enakieva, Y.Y.; Raitman, O.A.; Ezhov, A.A.; Meshkov, I.N.; Grishanov, D.A.; Ivanova, O.S.; et al. Layer-by-Layer Assembly of Porphyrin-Based Metal-Organic Frameworks on Solids Decorated with Graphene Oxide. New J. Chem. 2017, 41, 948–957. [Google Scholar] [CrossRef]
- Meshkov, I.N.; Zvyagina, A.I.; Shiryaev, A.A.; Nickolsky, M.S.; Baranchikov, A.E.; Ezhov, A.A.; Nugmanova, A.G.; Enakieva, Y.Y.; Gorbunova, Y.G.; Arslanov, V.V.; et al. Understanding Self-Assembly of Porphyrin-Based SURMOFs: How Layered Minerals Can Be Useful. Langmuir 2018, 34, 5184–5192. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, E.V.; Ezhov, A.A.; Baranchikov, A.E.; Gorbunova, Y.G.; Kalinina, M.A.; Arslanov, V.V. Interfacial Self-Assembly of Functional Bilayer Templates Comprising Porphyrin Arrays and Graphene Oxide. J. Colloid Interface Sci. 2018, 530, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, R.; Govindarasu, M.; Alharthi, S.S.; Mani, P.; Bernaurdshaw, N.; Gomathi, T.; Ansari, M.A.; Alomary, M.N.; Atwah, B.; Malik, M.S.; et al. Sustainable Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles Using Lantana Camara Leaf Extracts: Physicochemical Characterization, Photocatalytic Degradation, Antibacterial, and Anticancer Potency. Nanomaterials 2022, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Deng, R.; Mo, Z.; Ji, S.; Xie, Q. Fabrication and Characterization of Visible to Near-Infrared Photodetector Based on Multilayer Graphene/Mg2Si/Si Heterojunction. Nanomaterials 2022, 12, 3230. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.W.; Zou, Y.C.; Zhao, T.T.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Controllable Synthesis of Porphyrin-Based 2D Lanthanide Metal–Organic Frameworks with Thickness- and Metal-Node-Dependent Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 132, 3326–3332. [Google Scholar] [CrossRef]
- Takizawa, S.Y.; Aboshi, R.; Murata, S. Photooxidation of 1,5-Dihydroxynaphthalene with Iridium Complexes as Singlet Oxygen Sensitizers. Photochem. Photobiol. Sci. 2011, 10, 895–903. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Liu, D.; Luo, W.; Zhang, M.; Jiang, W.; Zhu, Y. Highly Efficient Organic Photocatalyst with Full Visible Light Spectrum through π-π Stacking of TCNQ-PTCDI. ACS Appl. Mater. Interfaces 2016, 8, 30225–30231. [Google Scholar] [CrossRef]
- Barreto, J.C.; Smith, G.S.; Strobel, N.H.P.; McQuillin, P.A.; Miller, T.A. Terephthalic Acid: A Dosimeter for the Detection of Hydroxyl Radicals in Vitro. Life Sci. 1994, 56, 89–96. [Google Scholar] [CrossRef]
- Carmen Ruiz Delgado, M.; Kim, E.G.; Da Silva Filho, D.A.; Bredas, J.L. Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization: A Density Functional Theory Investigation. J. Am. Chem. Soc. 2010, 132, 3375–3387. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Zeng, L.; Xu, J.; Le, Z.; Rao, H. Electrosynthesis of Highly Conducting Poly(1,5-Dihydroxynaphthalene) in BF3·Et2O. Eur. Polym. J. 2009, 45, 2279–2287. [Google Scholar] [CrossRef]
Method → | BET | D-R | D-R | D-R | Kalvin | Kalvin |
---|---|---|---|---|---|---|
Sample | a SBET, m2/g | b W0, cm3/g | b x0, nm | b E0(N2), kJ/mol | c WS, cm3/g | c WS–W0, cm3/g |
GO/PA-PDA | 40 | 0.02 | 1.03 | 3.85 | 0.06 | 0.04 |
GO/Zn (OAc)2/glu-PDI | 125 | 0.06 | 0.84 | 4.75 | 0.26 | 0.20 |
GO/Zn (OAc)2/PA-PDI | 190 | 0.00 | - | - | 0.25 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolov, M.; Nugmanova, A.; Shkolin, A.; Zvyagina, A.; Senchikhin, I.; Kalinina, M. Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties. J. Compos. Sci. 2023, 7, 14. https://doi.org/10.3390/jcs7010014
Sokolov M, Nugmanova A, Shkolin A, Zvyagina A, Senchikhin I, Kalinina M. Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties. Journal of Composites Science. 2023; 7(1):14. https://doi.org/10.3390/jcs7010014
Chicago/Turabian StyleSokolov, Maksim, Alsu Nugmanova, Andrey Shkolin, Alexandra Zvyagina, Ivan Senchikhin, and Maria Kalinina. 2023. "Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties" Journal of Composites Science 7, no. 1: 14. https://doi.org/10.3390/jcs7010014