Boosting the Catalytic Performance of Au-Pd/Graphene Oxide Nanocomposites via the Controlled Oxidation of Graphene Sheets
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Chen, L.; Li, S.; Huang, S.; Sun, Y.; Chen, Y.; Wang, Z.; Liu, W.; Li, X. One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J. Colloid Interface Sci. 2020, 566, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.N.; Tayadon, F.; Bagheri, H. A new electrochemical sensor based on an Au-Pd/reduced graphene oxide nano-composite for determination of Parathion. Int. J. Environ. Anal. Chem. 2020, 100, 1101–1117. [Google Scholar] [CrossRef]
- Bi, F.; Ma, S.; Gao, B.; Liu, B.; Huang, Y.; Qiao, R.; Zhang, X. Boosting toluene deep oxidation by tuning metal-support interaction in MOF-derived Pd@ZrO2 catalysts: The role of interfacial interaction between Pd and ZrO2. Fuel 2024, 357, 129833. [Google Scholar] [CrossRef]
- Wang, B.; Chang, T.-Y.; Gong, X.; Jiang, Z.; Yang, S.; Chen, Y.-S.; Fang, T. One-pot synthesis of Au/Pd core/shell nanoparticles supported on reduced graphene oxide with enhanced dehydrogenation performance for dodecahydro-N-ethylcarbazole. ACS Sustain. Chem. Eng. 2018, 7, 1760–1768. [Google Scholar] [CrossRef]
- Al-Nayili, A.; Albdiry, M. AuPd bimetallic nanoparticles supported on reduced graphene oxide nanosheets as catalysts for hydrogen generation from formic acid under ambient temperature. New J. Chem. 2021, 45, 10040–10048. [Google Scholar] [CrossRef]
- Darabdhara, G.; Amin, M.A.; Mersal, G.A.; Ahmed, E.M.; Das, M.R.; Zakaria, M.B.; Malgras, V.; Alshehri, S.M.; Yamauchi, Y.; Szunerits, S.; et al. Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. J. Mater. Chem. A 2015, 3, 20254–20266. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, Q.; Yuan, Q.; Liang, X.; Chen, Q.; Luo, P.; Yang, Y.; Fang, Z.; Bao, H. Ultrafast synthesis of multi-branched Au/Ag bimetallic nanoparticles at room temperature for photothermal reduction of 4-nitrophenol. J. Catal. 2023, 428, 115174. [Google Scholar] [CrossRef]
- Darabdhara, G.; Boruah, P.K.; Borthakur, P.; Hussain, N.; Das, M.R.; Ahamad, T.; Alshehri, S.M.; Malgras, V.; Wu, K.C.-W.; Yamauchi, Y. Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 2016, 8, 8276–8287. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Roy, A.; Pal, T. Au@Pd core–shell nanoparticles-decorated reduced graphene oxide: A highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv. 2015, 5, 51690–51700. [Google Scholar] [CrossRef]
- Tadayon, F.; Vahed, S.; Bagheri, H. Au-Pd/reduced graphene oxide composite as a new sensing layer for electrochemical determination of ascorbic acid, acetaminophen and tyrosine. Mater. Sci. Eng. C 2016, 68, 805–813. [Google Scholar] [CrossRef]
- Wang, J.; Kondrat, S.A.; Wang, Y.; Brett, G.L.; Giles, C.; Bartley, J.K.; Lu, L.; Liu, Q.; Kiely, C.J.; Hutchings, G.J. Au–Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. ACS Catal. 2015, 5, 3575–3587. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; Fu, M.-L. Composite of Au-Pd nanoalloys/reduced graphene oxide toward catalytic selective organic transformation to fine chemicals. Chem. Phys. Lett. 2018, 691, 61–67. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Zhang, F.; Zhang, G.; Fan, X. Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J. Mater. Chem. 2011, 21, 17658–17661. [Google Scholar] [CrossRef]
- Bawaked, S.; He, Q.; Dummer, N.F.; Carley, A.F.; Knight, D.W.; Bethell, D.; Kiely, C.J.; Hutchings, G.J. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catal. Sci. Technol. 2011, 1, 747–759. [Google Scholar] [CrossRef]
- He, Y.; Zhang, N.; Zhang, L.; Gong, Q.; Yi, M.; Wang, W.; Qiu, H.; Gao, J. Fabrication of Au–Pd nanoparticles/graphene oxide and their excellent catalytic performance. Mater. Res. Bull. 2014, 51, 397–401. [Google Scholar] [CrossRef]
- Li, S.-S.; Hu, Y.-Y.; Wang, A.-J.; Weng, X.; Chen, J.-R.; Feng, J.-J. Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators B Chem. 2014, 208, 468–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Graphene oxide as a surfactant and support for in-situ synthesis of Au–Pd nanoalloys with improved visible light photocatalytic activity. J. Phys. Chem. C 2014, 118, 5299–5308. [Google Scholar] [CrossRef]
- Yu, X.; Huo, Y.; Yang, J.; Chang, S.; Ma, Y.; Huang, W. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol. Appl. Surf. Sci. 2013, 280, 450–455. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Shkunov, M.; Silva, S.R.P. Correlation between wetting properties and electrical performance of solution processed PEDOT:PSS/CNT nano-composite thin films. Colloid Polym. Sci. 2013, 292, 661–668. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Shkunov, M.; Silva, S.R.P. Inkjet printed PEDOT:PSS/MWCNT nano-composites with aligned carbon nanotubes and enhanced conductivity. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2013, 8, 150–153. [Google Scholar] [CrossRef]
- de Lima, A.H.; Tavares, C.T.; da Cunha, C.C.S.; Vicentini, N.C.; Carvalho, G.R.; Fragneaud, B.; Maciel, I.O.; Legnani, C.; Quirino, W.G.; de Oliveira, L.F.C.; et al. Origin of optical bandgap fluctuations in graphene oxide. Eur. Phys. J. B 2020, 93, 105. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, N.; Singh, U.; Arif, M.; Singh, A. Higher oxidation level in graphene oxide. Optik 2017, 143, 115–124. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, D.; Zhu, J. Theoretical study of CO catalytic oxidation on free and defective gra-phene-supported Au–Pd bimetallic clusters. RSC Adv. 2014, 4, 42554–42561. [Google Scholar] [CrossRef]
- Ji, W.-X.; Zhang, C.-W.; Li, F.; Li, P.; Wang, P.-J.; Ren, M.-J.; Yuan, M. First-principles study of small Pd–Au alloy clusters on graphene. RSC Adv. 2014, 4, 55781–55789. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M. Polydopamine Functionalized Graphene Oxide as Membrane Nanofiller: Spectral and Structural Studies. Membranes 2021, 11, 86. [Google Scholar] [CrossRef]
- Sardinha, A.F.; Almeida, D.A.; Ferreira, N.G. Electrochemical impedance spectroscopy correlation among graphene oxide/carbon fibers (GO/CF) composites and GO structural parameters produced at different oxidation degrees. J. Mater. Res. Technol. 2020, 9, 10841–10853. [Google Scholar] [CrossRef]
- Oliveira, A.E.F.; Braga, G.B.; Tarley, C.R.T.; Pereira, A.C. Thermally reduced graphene oxide: Synthesis, studies and characterization. J. Mater. Sci. 2018, 53, 12005–12015. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, J.; Zhou, W.; Lai, L.; Xi, L.; Lam, Y.M.; Shen, Z.; Khezri, B.; Yu, T. Influences of graphene oxide support on the electrochemical performances of graphene ox-ide-MnO2 nanocomposites. Nanoscale Res. Lett. 2011, 6, 531. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Mahajan, R.L. A facile method for coal to graphene oxide and its application to a biosensor. Carbon 2021, 181, 408–420. [Google Scholar] [CrossRef]
- Gómez, S.; Rendtorff, N.M.; Aglietti, E.F.; Sakka, Y.; Suárez, G. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Appl. Surf. Sci. 2016, 379, 264–269. [Google Scholar] [CrossRef]
- Bera, M.; Chandravati; Gupta, P.; Maji, P.K. Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J. Nanosci. Nanotechnol. 2018, 18, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Chan-Thaw, C.E.; Savara, A.; Villa, A. Selective Benzyl Alcohol Oxidation over Pd Catalysts. Catalysts 2018, 8, 431. [Google Scholar] [CrossRef]
- Sharma, A.S.; Kaur, H.; Shah, D. Selective oxidation of alcohols by supported gold nanoparticles: Recent advances. RSC Adv. 2016, 6, 28688–28727. [Google Scholar] [CrossRef]
- Alshammari, H.M.; Alshammari, A.S.; Humaidi, J.R.; Alzahrani, S.A.; Alhumaimess, M.S.; Aldosari, O.F.; Hassan, H.M.A. Au-Pd bimetallic nanocatalysts incorporated into carbon nanotubes (CNTs) for selective oxidation of alkenes and alcohol. Processes 2020, 8, 1380. [Google Scholar] [CrossRef]
Sample | Structure | Graphite Treatment | Treatment Time |
---|---|---|---|
G 0 | Au-Pd/Graphite | No | - |
G 1 | Au-Pd/GO | Yes | 30 min |
G 2 | Au-Pd/GO | Yes | 60 min |
G 3 | Au-Pd/GO | Yes | 90 min |
G 4 | Au-Pd/GO | Yes | 120 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, A.S.; Abd Alfatah, A.; Alabdi, M.M. Boosting the Catalytic Performance of Au-Pd/Graphene Oxide Nanocomposites via the Controlled Oxidation of Graphene Sheets. J. Compos. Sci. 2024, 8, 82. https://doi.org/10.3390/jcs8030082
Alshammari AS, Abd Alfatah A, Alabdi MM. Boosting the Catalytic Performance of Au-Pd/Graphene Oxide Nanocomposites via the Controlled Oxidation of Graphene Sheets. Journal of Composites Science. 2024; 8(3):82. https://doi.org/10.3390/jcs8030082
Chicago/Turabian StyleAlshammari, Abdullah S., Alaa Abd Alfatah, and Muhammad M. Alabdi. 2024. "Boosting the Catalytic Performance of Au-Pd/Graphene Oxide Nanocomposites via the Controlled Oxidation of Graphene Sheets" Journal of Composites Science 8, no. 3: 82. https://doi.org/10.3390/jcs8030082
APA StyleAlshammari, A. S., Abd Alfatah, A., & Alabdi, M. M. (2024). Boosting the Catalytic Performance of Au-Pd/Graphene Oxide Nanocomposites via the Controlled Oxidation of Graphene Sheets. Journal of Composites Science, 8(3), 82. https://doi.org/10.3390/jcs8030082